
Qasim A Rafiq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Culture of human mesenchymal stem cells on microcarriers in a 5Âl stirred-tank bioreactor. Biotechnology Letters, 2013, 35, 1233-1245.	1.1	160
2	A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochemical Engineering Journal, 2014, 85, 79-88.	1.8	127
3	Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnology Journal, 2016, 11, 473-486.	1.8	117
4	Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA, 2018, 4, FSO290.	0.9	76
5	Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochemical Engineering Journal, 2016, 108, 24-29.	1.8	73
6	Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochemical Engineering Journal, 2016, 108, 14-23.	1.8	72
7	Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serumâ€free microcarrier process. Biotechnology and Bioengineering, 2015, 112, 1696-1707.	1.7	71
8	Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Current Opinion in Chemical Engineering, 2013, 2, 8-16.	3.8	58
9	Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses, 2021, 13, 1528.	1.5	45
10	Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: Utilising the phenomenon to improve culture performance. Biochemical Engineering Journal, 2018, 135, 11-21.	1.8	41
11	Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities. Cytotherapy, 2017, 19, 1140-1151.	0.3	40
12	Decentralised manufacturing of cell and gene therapy products: Learning from other healthcare sectors. Biotechnology Advances, 2018, 36, 345-357.	6.0	40
13	Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regenerative Medicine, 2018, 13, 159-173.	0.8	39
14	Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnology Advances, 2020, 45, 107636.	6.0	38
15	Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy, 2016, 18, 523-535.	0.3	35
16	Process development of human multipotent stromal cell microcarrier culture using an automated highâ€ŧhroughput microbioreactor. Biotechnology and Bioengineering, 2017, 114, 2253-2266.	1.7	35
17	Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015, 17, 1524-1535.	0.3	34
18	Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochemical Engineering Journal, 2018, 136, 9-17.	1.8	28

QASIM A RAFIQ

#	Article	IF	CITATIONS
19	Centralised versus decentralised manufacturing and the delivery of healthcare products: A United Kingdom exemplar. Cytotherapy, 2018, 20, 873-890.	0.3	23
20	Developing an automated robotic factory for novel stem cell therapy production. Regenerative Medicine, 2016, 11, 351-354.	0.8	22
21	A quantitative approach for understanding smallâ€scale human mesenchymal stem cell culture – implications for largeâ€scale bioprocess development. Biotechnology Journal, 2013, 8, 459-471.	1.8	21
22	Establishing the scalable manufacture of primary human Tâ€cells in an automated stirredâ€ŧank bioreactor. Biotechnology and Bioengineering, 2019, 116, 2488-2502.	1.7	20
23	Demonstrating the Manufacture of Human CARâ€ī Cells in an Automated Stirredâ€īank Bioreactor. Biotechnology Journal, 2020, 15, e2000177.	1.8	20
24	Design and development of a new ambr250® bioreactor vessel for improved cell and gene therapy applications. Biotechnology Letters, 2021, 43, 1103-1116.	1,1	19
25	Bioreactor Engineering Fundamentals for Stem Cell Manufacturing. , 2016, , 43-75.		16
26	Cell therapies: why scale matters. Pharmaceutical Bioprocessing, 2015, 3, 97-99.	0.8	15
27	Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochemical Engineering Journal, 2019, 141, 200-209.	1.8	14
28	CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering. Biotechnology Advances, 2019, 37, 107411.	6.0	12
29	Automating decentralized manufacturing of cell & gene therapy products. Cell & Gene Therapy Insights, 2016, 2, 489-497.	0.1	9
30	Mixing theory for culture and harvest in bioreactors of human mesenchymal stem cells on microcarriers. Theoretical Foundations of Chemical Engineering, 2016, 50, 895-900.	0.2	6
31	Process development and manufacturing approaches for mesenchymal stem cell therapies. , 2020, , 33-71.		6
32	A scaledâ€down model for the translation of bacteriophage culture to manufacturing scale. Biotechnology and Bioengineering, 2019, 116, 972-984.	1.7	5
33	The role of biopreservation in cell and gene therapy bioprocessing. Cell & Gene Therapy Insights, 2017, 3, 335-344.	0.1	5
34	The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regenerative Medicine, 2015, 10, 989-1003.	0.8	4
35	Isolation of Mesenchymal Stem Cells from Bone Marrow Aspirate. , 2011, , 115-123.		1
36	Supply Chain Considerations and Strategies for Regenerative Medicine Products. , 2019, , .		0