Shaochun Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Materials Horizons, 2022, 9, 1232-1242.	6.4	36
2	Microwave selective heating ultrafast construction of coral-like TiO2-MXene /graphene hybrid architectures for high-performance lithium-ion battery. Journal of Power Sources, 2022, 542, 231738.	4.0	7
3	High rate capabilities and remarkably cycle-stable flexible pseudocapacitors based on nano-coralloid arrays with sulfide vacancies enhanced Niâ^'Coâ^'S nanoparticle covering. Nanotechnology, 2021, 32, 275403.	1.3	0
4	Porous NiCo ₂ O ₄ –FeCo ₂ O ₄ Nanowire Arrays as Advanced Electrodes for High-Performance Flexible Asymmetric Supercapacitors. Energy & Fuels, 2021, 35, 12680-12687.	2.5	6
5	Energy-efficient smart window based on a thermochromic microgel with ultrahigh visible transparency and infrared transmittance modulation. Journal of Materials Chemistry A, 2021, 9, 17481-17491.	5.2	49
6	Scalable Carbon Black Enhanced Nanofiber Network Films for Highâ€Efficiency Solar Steam Generation. Advanced Materials Interfaces, 2021, 8, 2101160.	1.9	14
7	Three-Dimensional Porous Network Electrodes with Cu(OH) ₂ Nanosheet/Ni ₃ S ₂ Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors. ACS Omega, 2021, 6, 34276-34285.	1.6	7
8	Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability. Scientific Reports, 2020, 10, 11023.	1.6	32
9	Vertically Aligned and Ordered Arrays of 2D MCo ₂ S ₄ @Metal with Ultrafast Ion/Electron Transport for Thickness-Independent Pseudocapacitive Energy Storage. ACS Nano, 2020, 14, 12719-12731.	7.3	52
10	Ultrastrong and Stiff Carbon Nanotube/Aluminum–Copper Nanocomposite via Enhancing Friction between Carbon Nanotubes. Nano Letters, 2019, 19, 6255-6262.	4.5	22
11	Two-Stage Tunneling-Dominated Electrodeposition for Large-Scale Production of Ultralong Wavy Metal Microstructures on Native Oxide Layer-Passivated Si Electrode with Specific Surface Configuration. Journal of Physical Chemistry C, 2019, 123, 16326-16331.	1.5	0
12	Hexagonal prism arrays constructed using ultrathin porous nanoflakes of carbon doped mixed-valence Co–Mn–Fe phosphides for ultrahigh areal capacitance and remarkable cycling stability. Journal of Materials Chemistry A, 2019, 7, 4431-4437.	5.2	34
13	Achieving Rich Mixed-Valence Polysulfide/Carbon Nanotube Films toward Ultrahigh Volume Energy Density and Largely Deformable Pseudocapacitors. ACS Applied Materials & Interfaces, 2019, 11, 25271-25282.	4.0	7
14	High-intensity compact ultrasound assisted synthesis of porous N-doped graphene thin microsheets with well-dispersed near-spherical Ni2P nanoflowers for energy storage. Chemical Engineering Journal, 2019, 361, 387-397.	6.6	21
15	Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe,) Tj ETQq1 supercapacitors. Nano Energy, 2018, 45, 439-447.	l 0.784314 rg 8.2	gBT /Overlock 112
16	Richâ€Mixedâ€Valence Ni <i>_x</i> Co <i>_{3â^'x}</i> P <i>_y</i> Porous Nanowires Interwelded Junctionâ€Free 3D Network Architectures for Ultrahigh Areal Energy Density Supercapacitors. Advanced Functional Materials, 2018, 28, 1804620.	7.8	122
17	Monolayer standing MnO2-Nanosheet covered Mn3O4 octahedrons anchored in 3D N-Doped graphene networks as supercapacitor electrodes with remarkable cycling stability. Journal of Power Sources, 2018, 396, 483-490.	4.0	38
18	Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. ChemSusChem, 2017, 10, 2301-2308.	3.6	37

Shaochun Tang

#	Article	IF	CITATIONS
19	Reply to Comment on "Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates― ChemSusChem, 2017, 10, 2312-2315.	3.6	0
20	General Controlled Sulfidation toward Achieving Novel Nanosheetâ€Built Porous Squareâ€FeCo ₂ S ₄ â€Tube Arrays for Highâ€Performance Asymmetric Allâ€Solidâ€State Pseudocapacitors. Advanced Energy Materials, 2017, 7, 1601985.	10.2	226
21	Supercapacitors: General Controlled Sulfidation toward Achieving Novel Nanosheetâ€Built Porous Squareâ€FeCo ₂ S ₄ â€Tube Arrays for Highâ€Performance Asymmetric Allâ€Solidâ€State Pseudocapacitors (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
22	Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application. Scientific Reports, 2017, 7, 4403.	1.6	72
23	Wearable Highâ€Performance Supercapacitors Based on Silverâ€Sputtered Textiles with FeCo ₂ S ₄ –NiCo ₂ S ₄ Composite Nanotubeâ€Built Multitripod Architectures as Advanced Flexible Electrodes. Advanced Energy Materials, 2017, 7, 1601234.	10.2	293
24	Hierarchical Multicomponent Electrode with Interlaced Ni(OH) ₂ Nanoflakes Wrapped Zinc Cobalt Sulfide Nanotube Arrays for Sustainable Highâ€Performance Supercapacitors. Advanced Energy Materials, 2017, 7, 1701228.	10.2	162
25	Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth–pinhole polyaniline electrodes with excellent energy density. RSC Advances, 2016, 6, 82995-83002.	1.7	27
26	Scalable Synthesis of Ag Networks with Optimized Sub-monolayer Au-Pd Nanoparticle Covering for Highly Enhanced SERS Detection and Catalysis. Scientific Reports, 2016, 6, 37092.	1.6	19
27	High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Scientific Reports, 2016, 6, 12883.	1.6	81
28	Hierarchically MnO ₂ –Nanosheet Covered Submicrometer-FeCo ₂ O ₄ -Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4762-4770	4.0	104
29	Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors. Nanotechnology, 2015, 26, 374001.	1.3	5
30	A high energy density asymmetric all-solid-state supercapacitor based on cobalt carbonate hydroxide nanowire covered N-doped graphene and porous graphene electrodes. Journal of Materials Chemistry A, 2015, 3, 18505-18513.	5.2	68
31	Highly processible and electrochemically active graphene-doped polyacrylic acid/polyaniline allowing the preparation of defect-free thin films for solid-state supercapacitors. RSC Advances, 2015, 5, 62670-62677.	1.7	9
32	Large-scale fabrication of porous bulk silver thin sheets with tunable porosity for high-performance binder-free supercapacitor electrodes. RSC Advances, 2015, 5, 45194-45200.	1.7	18
33	The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. Journal of Materials Science, 2014, 49, 2802-2809.	1.7	21
34	3D nitrogen-doped graphene/Co(OH)2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances, 2014, 4, 61753-61758.	1.7	26
35	Bubble-assisted growth of hollow palladium nanospheres with structure control allowing very thin shells for highly enhanced catalysis. RSC Advances, 2014, 4, 13729-13732.	1.7	8
36	Hierarchically Porous MnO ₂ Microspheres Doped with Homogeneously Distributed Fe ₃ O ₄ Nanoparticles for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 17637-17646.	4.0	89

Shaochun Tang

#	Article	IF	CITATIONS
37	Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and SERS detection. Journal of Materials Chemistry A, 2014, 2, 3648-3660.	5.2	70
38	MnO2–Au Composite Electrodes for Supercapacitors. Chemistry Letters, 2014, 43, 122-124.	0.7	13
39	Diameter-controlled synthesis of polycrystalline nickel nanowires and their size dependent magnetic properties. CrystEngComm, 2012, 14, 7209.	1.3	18
40	Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation. Nanotechnology, 2012, 23, 255606.	1.3	32
41	Layered spherical carbon composites with nanoparticles of different metals grown simultaneously inside and outside. Nanotechnology, 2012, 23, 095603.	1.3	6
42	Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Science China Technological Sciences, 2012, 55, 894-902.	2.0	37
43	Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. Journal of Colloid and Interface Science, 2012, 375, 125-133.	5.0	38
44	Facile and rapid synthesis of nickel nanowires and their magnetic properties. Journal of Nanoparticle Research, 2011, 13, 7085-7094.	0.8	24
45	Co dendrite based bimetallic structures with nanoflake-built Pt covers and strong catalytic activity. Journal of Colloid and Interface Science, 2010, 351, 217-224.	5.0	12
46	Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. Journal of Materials Chemistry, 2010, 20, 5436.	6.7	169
47	Order-disorder transition and Curie transition in Ni70Fe30 nanoalloy. Applied Physics Letters, 2009, 94, 213112.	1.5	16
48	Controllable synthesis of metal particles by a direct current electrochemical approach. Science in China Series D: Earth Sciences, 2009, 52, 2709-2714.	0.9	2
49	Quadrangular Prism Porous Shells Constructed by Parallelly Interconnected and Lattice‧trained NiCoP Nanoflakes for Maximized Energy Storage. Advanced Materials Interfaces, 0, , 2200590.	1.9	2