
Katarzyna BrzÃ³zka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Structural and Magnetic Properties of Fe-Co Wire-like Nanochains Caused by Annealing Atmosphere. Materials, 2021, 14, 4748.	2.9	1
2	The glass-like structure of iron–nickel nanochains produced by the magnetic-field-induced reduction reaction with sodium borohydride. Physical Chemistry Chemical Physics, 2021, 24, 326-335.	2.8	1
3	MÓ§ssbauer spectroscopy as a useful method for distinguishing between real and false meteorites. Hyperfine Interactions, 2019, 240, 1.	0.5	1
4	Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 346-354.	2.3	17
5	Classification of Meteorites - Mössbauer Comparative Studies of Three Ordinary Chondrites Measured in Different Laboratories. Acta Physica Polonica A, 2018, 134, 1070-1075.	0.5	12
6	Phase Evolution of Iron Nanoparticles Subjected to Thermal Treatment. Acta Physica Polonica A, 2018, 134, 1015-1020.	0.5	0
7	Spin Relaxation Effects in Oil-Nanomagnetite Ferrofluids - Mössbauer Spectrometry Studies. Acta Physica Polonica A, 2018, 134, 1007-1014.	0.5	0
8	Nanocomposite composed of multiwall carbon nanotubes covered by hematite nanoparticles as anode material for Li-ion batteries. Electrochimica Acta, 2017, 228, 82-90.	5.2	8
9	Iron-containing phases in metallurgical and coke dusts as well as in bog iron ore. Nukleonika, 2017, 62, 187-195.	0.8	15
10	Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons. Journal of Magnetism and Magnetic Materials, 2017, 424, 233-237.	2.3	12
11	Magnetism and Structure Evolution in Ni-Zn Ferrites Thin Films - CEMS Study. Acta Physica Polonica A, 2017, 131, 836-838.	0.5	2
12	Phase Analysis of Magnetic Inclusions in Nanomaterials Based on Multiwall Carbon Nanotubes. Acta Physica Polonica A, 2017, 131, 863-865.	0.5	1
13	Interface influence on the properties of Co 90 Fe 10 films on soft magnetic underlayers – Magnetostrictive and Mössbauer spectrometry studies. Journal of Magnetism and Magnetic Materials, 2016, 401, 943-948.	2.3	5
14	Hyperfine magnetic fields in substituted Finemet alloys. Hyperfine Interactions, 2016, 237, 1.	0.5	0
15	High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 3900-3909.	2.8	42
16	Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction. Beilstein Journal of Nanotechnology, 2015, 6, 1652-1660.	2.8	39
17	Iron-containing phases in fly ashes from different combustion systems. Nukleonika, 2015, 60, 151-154.	0.8	8
18	The influence of thermal annealing on structure and oxidation of iron nanowires. Nukleonika, 2015, 60, 87-91.	0.8	10

Katarzyna BrzÃ³zka

#	Article	IF	CITATIONS
19	Mössbauer and Magnetic Study of Fe+Vitroperm+Plastic System. Acta Physica Polonica A, 2014, 126, 148-149.	0.5	0
20	lron speciation in coal fly ashes—chemical and Mössbauer analysis. Hyperfine Interactions, 2014, 226, 483-487.	0.5	7
21	Analysis of surface layers and wear products by Mössbauer spectral analysis. Wear, 2013, 297, 958-965.	3.1	7
22	Phase Composition and Magnetic Properties of Nanoperm Thin Films Doped with Yttrium. Acta Physica Polonica A, 2012, 121, 1270-1272.	0.5	0
23	Structural and Magnetic Ordering in Fe-Ga Thin Films Examined by Mössbauer Spectrometry. Acta Physica Polonica A, 2011, 119, 21-23.	0.5	5
24	Mössbauer Study of Magnetic Texture of Finemet-Type Ribbons. Acta Physica Polonica A, 2011, 119, 33-36.	0.5	8
25	Phase Composition of the Surface Zone of Nitrided Cast Steels and Their Mechanical Properties. Acta Physica Polonica A, 2011, 119, 28-32.	0.5	0
26	The method of invariants in ⁵⁷ Fe Mössbauer spectroscopy on selected examples. Journal of Physics: Conference Series, 2010, 217, 012010.	0.4	3
27	The influence of surface layer nitriding on phase composition and tribological properties of cast steel. Journal of Physics: Conference Series, 2010, 217, 012070.	0.4	1
28	Microstructural Study of Fe-Si(Ge)-Nb-Cu-B Finemet Alloys. Acta Physica Polonica A, 2010, 118, 818-819.	0.5	4
29	Finemet Thin Films Substituted by Chromium - CEMS and MOKE Study. Acta Physica Polonica A, 2010, 118, 794-796.	0.5	0
30	Microscopic Properties of γ-FeMn Studied by Mössbauer Spectroscopy. Journal of the Physical Society of Japan, 2009, 78, 124708.	1.6	2
31	Influence of Milling and Compaction Processes οn Magnetic Properties of FeCo Powder. Acta Physica Polonica A, 2009, 115, 403-405.	0.5	1
32	Changes in structure and magnetic hyperfine fields of Finemet alloys, induced by transition elements substitution. Hyperfine Interactions, 2008, 183, 235-241.	0.5	3
33	Local Structure and Magnetic Characteristics of FINEMET Alloys Substituted by Vanadium. Acta Physica Polonica A, 2008, 113, 51-54.	0.5	5
34	Comparison of Magnetic and Mössbauer Results Obtained for Palaeozoic Rocks of Hornsund, Southern Spitsbergen, Arctic. Acta Physica Polonica A, 2008, 114, 1675-1682.	0.5	6
35	Modeling of Magnetic Hyperfine Field Distribution for Spherical Nanoparticles of bcc Structure. Acta Physica Polonica A, 2008, 113, 537-540.	0.5	0
36	Structural evolution of ball-milled permalloy. Hyperfine Interactions, 2007, 168, 1091-1096.	0.5	4

Katarzyna BrzÃ³zka

#	Article	IF	CITATIONS
37	Magnetostriction and other properties of alloys. Journal of Magnetism and Magnetic Materials, 2006, 304, e681-e683.	2.3	9
38	Examination of Phases in Milled Fe-Ni Alloys by Mössbauer Spectrometry. European Physical Journal D, 2004, 54, 145-148.	0.4	3
39	Mössbauer Spectroscopy Temperature Investigations of Fe-Si-Cu-Nb-B Powder. European Physical Journal D, 2004, 54, 193-196.	0.4	1
40	Mössbauer and magnetoelastic investigations of the surface effects in Fe72Cu1.5Nb4Si13.5B9 nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1443-1444.	2.3	5
41	Evolution of the hyperfine and magnetoelastic parameters in the course of crystallization process in niobium-free FINEMET-type alloy. Journal of Magnetism and Magnetic Materials, 2002, 250, 83-91.	2.3	9
42	Hyperfine magnetic fields in FeZrB(Cu) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 654-658.	5.6	18
43	Influence of chemical disorder on the critical behaviour of FeNi-based amorphous ferromagnets. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 167-168.	2.3	1
44	Mössbauer studies of FeZrB(Cu) amorphous alloys. Journal of Magnetism and Magnetic Materials, 1996, 160, 255-256.	2.3	20
45	Evolution of Mössbauer spectra with nanocrystallite content in Fe73.5Cu1Nb3Si15.5B7 alloys. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 481-482.	2.3	5
46	Mössbauer study on the magnetic phase transition in Co. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1529-1530.	2.3	0
47	Magnetic Phase Transition of Amorphous Alloys FeNiSiB. Acta Physica Polonica A, 1994, 85, 195-199.	0.5	3
48	Mössbauer studies of amorphous ferromagnets FeNiSiB nearT c. Hyperfine Interactions, 1990, 59, 365-368.	0.5	0
49	Critical behaviour of Fe and Ni by Mössbauer spectroscopy. Hyperfine Interactions, 1988, 42, 1083-1086.	0.5	1