John T Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288221/publications.pdf Version: 2024-02-01

IOHN T CREEN

#	Article	IF	CITATIONS
1	Intracerebellar infusion of an mGluR1/5 agonist enhances eyeblink conditioning Behavioral Neuroscience, 2021, 135, 336-342.	0.6	1
2	New functions of the rodent prelimbic and infralimbic cortex in instrumental behavior. Neurobiology of Learning and Memory, 2021, 185, 107533.	1.0	14
3	Cerebellum and cognition: Does the rodent cerebellum participate in cognitive functions?. Neurobiology of Learning and Memory, 2020, 170, 106996.	1.0	28
4	Some factors that restore goal-direction to a habitual behavior. Neurobiology of Learning and Memory, 2020, 169, 107161.	1.0	33
5	Differential effects of two early life stress paradigms on cerebellar-dependent delay eyeblink conditioning. Neurobiology of Stress, 2020, 13, 100242.	1.9	0
6	Long-Term Aberrations To Cerebellar Endocannabinoids Induced By Early-Life Stress. Scientific Reports, 2020, 10, 7236.	1.6	13
7	Inactivation of the prelimbic cortex attenuates operant responding in both physical and behavioral contexts. Neurobiology of Learning and Memory, 2020, 171, 107189.	1.0	6
8	Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding. ENeuro, 2019, 6, ENEURO.0125-19.2019.	0.9	16
9	Inactivation of prelimbic and infralimbic cortex respectively affects minimally-trained and extensively-trained goal-directed actions. Neurobiology of Learning and Memory, 2018, 155, 164-172.	1.0	38
10	Inactivation of the Prelimbic Cortex Attenuates Context-Dependent Operant Responding. Journal of Neuroscience, 2017, 37, 2317-2324.	1.7	29
11	Cerebellar learning modulates surface expression of a voltage-gated ion channel in cerebellar cortex. Neurobiology of Learning and Memory, 2017, 142, 252-262.	1.0	1
12	Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats Behavioral Neuroscience, 2017, 131, 460-469.	0.6	10
13	Intracerebellar infusion of the protein kinase M zeta (PKMζ) inhibitor zeta-inhibitory peptide (ZIP) disrupts eyeblink classical conditioning Behavioral Neuroscience, 2016, 130, 563-571.	0.6	4
14	Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer. Neurobiology of Learning and Memory, 2016, 128, 33-39.	1.0	30
15	17β-estradiol replacement in ovariectomized female rats slows set 1 dorsolateral striatial-dependent learning and enhances learning of set 2 in an extradimensional set-shifting paradigm Behavioral Neuroscience, 2016, 130, 44-49.	0.6	8
16	Reinforcer devaluation as a consequence of acute nicotine exposure and withdrawal. Psychopharmacology, 2015, 232, 1583-1594.	1.5	11
17	Physical exercise affects attentional orienting behavior through noradrenergic mechanisms Behavioral Neuroscience, 2015, 129, 361-367.	0.6	7
18	Cerebellar secretin modulates eyeblink classical conditioning. Learning and Memory, 2014, 21, 668-675.	0.5	7

John T Green

#	Article	IF	CITATIONS
19	Effects of continuous vs. cycling estrogen replacement on the acquisition, retention and expression of place- and response-learning in the open-field tower maze. Neurobiology of Learning and Memory, 2014, 114, 81-89.	1.0	14
20	Voluntary exercise improves performance of a discrimination task through effects on the striatal dopamine system. Learning and Memory, 2014, 21, 334-337.	0.5	17
21	Cerebellar structure and function in male Wistar-Kyoto hyperactive rats Behavioral Neuroscience, 2013, 127, 311-324.	0.6	1
22	Gonadal hormones and voluntary exercise interact to improve discrimination ability in a set-shift task Behavioral Neuroscience, 2013, 127, 744-754.	0.6	8
23	Cellular Mechanisms and Behavioral Consequences of Kv1.2 Regulation in the Rat Cerebellum. Journal of Neuroscience, 2012, 32, 9228-9237.	1.7	31
24	Motor timing deficits in children with Attention-Deficit/Hyperactivity disorder. Human Movement Science, 2012, 31, 255-265.	0.6	38
25	The effects of two forms of physical activity on eyeblink classical conditioning. Behavioural Brain Research, 2011, 219, 165-174.	1.2	10
26	Spontaneous recovery but not reinstatement of the extinguished conditioned eyeblink response in the rat Behavioral Neuroscience, 2011, 125, 613-625.	0.6	11
27	Set shifting in a rodent model of attention-deficit/hyperactivity disorder Behavioral Neuroscience, 2011, 125, 372-382.	0.6	13
28	Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder Behavioral Neuroscience, 2011, 125, 979-987.	0.6	6
29	Shortened conditioned eyeblink response latency in male but not female Wistar-Kyoto hyperactive rats Behavioral Neuroscience, 2009, 123, 650-664.	0.6	6
30	Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder Behavioral Neuroscience, 2008, 122, 63-74.	0.6	19
31	Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiology of Learning and Memory, 2007, 87, 269-284.	1.0	69
32	Inactivation of sodium channel Scn8A (Nav1.6) in purkinje neurons impairs learning in Morris Water Maze and delay but not trace eyeblink classical conditioning Behavioral Neuroscience, 2006, 120, 229-240.	0.6	54
33	The effects of moderate neonatal ethanol exposure on eyeblink conditioning and deep cerebellar nuclei neuron numbers in the rat. Alcohol, 2006, 39, 135-150.	0.8	19
34	Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning. Learning and Memory, 2005, 12, 260-269.	0.5	79
35	The effects of ethanol on the developing cerebellum and eyeblink classical conditioning. Cerebellum, 2004, 3, 178-187.	1.4	57
36	Eyeblink Classical Conditioning and Interpositus Nucleus Activity Are Disrupted in Adult Rats Exposed to Ethanol as Neonates. Learning and Memory, 2002, 9, 304-320.	0.5	49

John T Green

#	Article	IF	CITATIONS
37	Eyeblink Classical Conditioning in Aging Animals. , 2002, , 155-178.		Ο
38	The long-term effects of nefiracetam on learning in older rabbits. Behavioural Brain Research, 2002, 136, 299-308.	1.2	7
39	Dual-Task and Repeated Measures Designs: Utility in Assessing Timing and Neural Functions in Eyeblink Conditioning. , 2002, , 95-117.		1
40	Neonatal ethanol produces cerebellar deep nuclear cell loss and correlated disruption of eyeblink conditioning in adult rats. Brain Research, 2002, 956, 302-311.	1.1	59
41	Using eyeblink classical conditioning as a test of the functional consequences of exposure of the developing cerebellum to alcohol. Integrative Psychological and Behavioral Science, 2002, 38, 45-64.	0.3	2
42	The effect of scopolamine in older rabbits tested in the 750 ms delay eyeblink classical conditioning procedure. Integrative Psychological and Behavioral Science, 2002, 37, 103-113.	0.3	4
43	Discrimination reversal conditioning of an eyeblink response is impaired by NMDA receptor blockade. Integrative Psychological and Behavioral Science, 2001, 36, 62-74.	0.3	13
44	Classical eyeblink conditioning: Clinical models and applications. Integrative Psychological and Behavioral Science, 2001, 36, 220-238.	0.3	26
45	Eyeblink classical conditioning: Hippocampal formation is for neutral stimulus associations as cerebellum is for association–response Psychological Bulletin, 2000, 126, 138-158.	5.5	81
46	Impairment in Eyeblink Classical Conditioning in Adult Rats Exposed to Ethanol as Neonates. Alcoholism: Clinical and Experimental Research, 2000, 24, 438-447.	1.4	47
47	How is the feed-forward Pavlovian control system instantiated in neurobiology?. Behavioral and Brain Sciences, 2000, 23, 267-267.	0.4	0
48	A Nicotinic Cholinergic Agonist (GTS - 21) andEyeblink Classical Conditioning: Acquisition, Retention, and Relearning in Older Rabbits. Experimental Aging Research, 2000, 26, 323-336.	0.6	23
49	Evaluation of behavioral disinhibition in P/NP and HAD1/LAD1 Rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 1025-1039.	2.5	14
50	Timing in Eyeblink Classical Conditioning and Timed-Interval Tapping. Psychological Science, 1999, 10, 19-23.	1.8	23
51	Conditioning in identical twins with ataxia-telangiectasia. Neurocase, 1999, 5, 425-433.	0.2	6
52	Conditioning in Identical Twins with Ataxia-Telangiectasia. Neurocase, 1999, 5, 425-433.	0.2	3
53	Concurrent eyeblink classical conditioning and rotary pursuit performance: Implications for independent nondeclarative memory systems Neuropsychology, 1997, 11, 474-487.	1.0	5
54	Using numerosity judgments to determine what is learned during automatization Journal of Experimental Psychology: Learning Memory and Cognition, 1997, 23, 1046-1052.	0.7	5