Christoph Unterweger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288036/publications.pdf

Version: 2024-02-01

623188 552369 34 745 14 26 citations g-index h-index papers 34 34 34 852 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos—screening, trends, and analysis. Environmental Science and Pollution Research, 2022, 29, 35138-35149.	2.7	9
2	Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H2O, and CO2. Nanomaterials, 2022, 12, 677.	1.9	5
3	Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules, 2022, 27, 1477.	1.7	8
4	Macroporous nitrogen-containing carbon for electrochemical capacitors. Electrochimica Acta, 2022, 418, 140370.	2.6	2
5	Viscoseâ€based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment. Journal of Porous Materials, 2021, 28, 727-739.	1.3	17
6	Sponge-like polypyrrole–nanofibrillated cellulose aerogels: synthesis and application. Journal of Materials Chemistry C, 2021, 9, 12615-12623.	2.7	14
7	Enhancement of conductivity, mechanical and biological properties of polyaniline-poly(N-vinylpyrrolidone) cryogels by phytic acid. Polymer, 2021, 217, 123450.	1.8	9
8	Pore Development during the Carbonization Process of Lignin Microparticles Investigated by Small Angle X-ray Scattering. Molecules, 2021, 26, 2087.	1.7	8
9	Development of a method for vapour phase trimethylsilylation of surface hydroxyl groups. Surfaces and Interfaces, 2021, 23, 100957.	1.5	2
10	Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis. Journal of Carbon Research, 2021, 7, 55.	1.4	6
11	Influence of the carbonization temperature on the properties of carbon fibers based on technical softwood kraft lignin blends. Carbon Trends, 2021, 5, 100094.	1.4	7
12	Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications. Polymer, 2020, 208, 122945.	1.8	22
13	Highly conducting 1-D polypyrrole prepared in the presence of safranin. Journal of Materials Chemistry C, 2020, 8, 12140-12147.	2.7	22
14	Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. Journal of Carbon Research, 2020, 6, 17.	1.4	14
15	Structure and electrical resistivity of individual carbonised natural and man-made cellulose fibres. Journal of Materials Science, 2020, 55, 10271-10280.	1.7	10
16	Effect of initial freezing temperature and comonomer concentration on the properties of poly(aniline-co-m-phenylenediamine) cryogels supported by poly(vinyl alcohol). Colloid and Polymer Science, 2020, 298, 293-301.	1.0	6
17	Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites. Composites Science and Technology, 2020, 188, 107998.	3.8	40
18	Increasing the Impact Toughness of Cellulose Fiber Reinforced Polypropylene Composites—Influence of Different Impact Modifiers and Production Scales. Journal of Composites Science, 2019, 3, 82.	1.4	15

#	Article	IF	CITATIONS
19	Tailoring of carbonized polypyrrole nanotubes core by different polypyrrole shells for oxygen reduction reaction selectivity modification. Journal of Colloid and Interface Science, 2019, 551, 184-194.	5.0	27
20	Lignin-based multiwall carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 121, 175-179.	3.8	32
21	Improvements in the carbonisation of viscose fibres. Reinforced Plastics, 2019, 63, 146-150.	0.5	10
22	Determination of the surface chemistry of ozone-treated carbon fibers by highly consistent evaluation of X-ray photoelectron spectra. Carbon, 2019, 146, 97-105.	5 . 4	17
23	Comparison of four technical lignins as a resource for electrically conductive carbon particles. BioResources, 2019, 14, 1091-1109.	0.5	31
24	Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride. Applied Surface Science, 2018, 443, 244-254.	3.1	10
25	Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. Materials Chemistry and Physics, 2018, 213, 352-361.	2.0	35
26	Electrically Conducting Carbon Microparticles by Direct Carbonization of Spent Wood Pulping Liquor. ACS Sustainable Chemistry and Engineering, 2018, 6, 3385-3391.	3. 2	18
27	Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials, 2018, 8, 1055.	1.9	7
28	Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid). Polymers, 2016, 8, 205.	2.0	14
29	Investigation on the thermo-oxidative stability of carbon fiber sizings for application in thermoplastic composites. Polymer Degradation and Stability, 2016, 125, 33-42.	2.7	30
30	Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Composites Science and Technology, 2015, 108, 41-47.	3.8	111
31	Thermo-mechanical properties of \hat{I}^2 -nucleated polypropylene multilayers. Polymer Testing, 2014, 39, 79-85.	2.3	5
32	Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites. Composites Science and Technology, 2014, 103, 49-55.	3.8	67
33	Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 2014, 35, 227-236.	2.3	111
34	Screening of spinning oils for meltâ€spun ligninâ€based carbon fiber precursors. Journal of Applied Polymer Science, 0, , 52134.	1.3	4