Klaus T Wanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9287836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with tricyclic cage structures in the lipophilic domain as GABA uptake inhibitors. Medicinal Chemistry Research, 2021, 30, 586-609.	1.1	1
2	MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem, 2021, 16, 199-215.	1.6	5
3	Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and l³-aminobutyric acid transporters. European Journal of Medicinal Chemistry, 2021, 218, 113397.	2.6	14
4	Screening for New Inhibitors of Glycine Transporter 1 and 2 by Means of MS Binding Assays. ChemMedChem, 2021, 16, 3094-3104.	1.6	2
5	Novel Functionalized Amino Acids as Inhibitors of GABA Transporters with Analgesic Activity. ACS Chemical Neuroscience, 2021, 12, 3073-3100.	1.7	6
6	Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity. European Journal of Medicinal Chemistry, 2021, 221, 113512.	2.6	6
7	Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. European Journal of Medicinal Chemistry, 2020, 188, 111920.	2.6	11
8	Synthesis and biological evaluation of fluorescent GAT-ligands based on meso-substituted BODIPY dyes. Medicinal Chemistry Research, 2020, 29, 301-327.	1.1	4
9	Combination of MS Binding Assays and affinity selection mass spectrometry for screening of structurally homogenous libraries as exemplified for a focused oxime library addressing the neuronal GABA transporter 1. European Journal of Medicinal Chemistry, 2020, 206, 112598.	2.6	1
10	Synthesis and biological evaluation of α- and β-hydroxy substituted amino acid derivatives as potential mGAT1–4 inhibitors. Medicinal Chemistry Research, 2020, 29, 1321-1340.	1.1	4
11	Synthesis of 1,5â€Ringâ€Fused Imidazoles from Cyclic Imines and TosMIC – Identification of in situ Generated N â€Methyleneformamide as a Catalyst in the van Leusen Imidazole Synthesis. European Journal of Organic Chemistry, 2020, 2020, 3599-3612.	1.2	5
12	N‣ubstituted Nipecotic Acids as (<i>S</i>)‣NAPâ€5114 Analogues with Modified Lipophilic Domains. ChemMedChem, 2020, 15, 756-771.	1.6	7
13	Synthesis and biological evaluation of fluorescent GAT-ligands based on asymmetric substituted BODIPY dyes. Medicinal Chemistry Research, 2020, 29, 767-782.	1.1	1
14	Accessing Tricyclic Imines Comprising a 2-Azabicyclo[2.2.2]octane Scaffold by Intramolecular Hetero-Diels–Alder Reaction of 4-Alkenyl-Substituted N-Silyl-1,4-dihydropyridines. Synthesis, 2019, 51, 4296-4310.	1.2	4
15	Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a cis-alkene spacer as GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 822-831.	1.4	4
16	MSâ€Based Screening of 5â€Substituted Nipecotic Acid Derived Hydrazone Libraries as Ligands of the GABA Transporterâ€1. ChemMedChem, 2019, 14, 583-593.	1.6	4
17	Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1). Bioorganic and Medicinal Chemistry, 2019, 27, 2753-2763.	1.4	0
18	MS binding assays for GlyT1 based on Org24598 as nonlabelled reporter ligand. Neuropharmacology, 2019, 161, 107561.	2.0	10

#	Article	IF	CITATIONS
19	Synthesis and Biological Evaluation of Nipecotic Acid and Guvacine Derived 1,3â€Disubstituted Allenes as Inhibitors of Murine GABA Transporter mGAT1. ChemMedChem, 2019, 14, 1135-1151.	1.6	7
20	Construction of 4-substituted 2-(pyrrolidine-3-yl)acetic acid derivatives as cyclic γ-aminobutyric acid analogues employing intermolecular [2+2]-photocycloaddition as key steps. Tetrahedron, 2019, 75, 2755-2762.	1.0	3
21	Screening oxime libraries by means of mass spectrometry (MS) binding assays: Identification of new highly potent inhibitors to optimized inhibitors γ-aminobutyric acid transporter 1. Bioorganic and Medicinal Chemistry, 2019, 27, 1232-1245.	1.4	8
22	A Library Screening Strategy Combining the Concepts of MS Binding Assays and Affinity Selection Mass Spectrometry. Frontiers in Chemistry, 2019, 7, 665.	1.8	16
23	Generation and screening of pseudostatic hydrazone libraries derived from 5-substituted nipecotic acid derivatives at the GABA transporter mGAT4. Bioorganic and Medicinal Chemistry, 2019, 27, 144-152.	1.4	2
24	Development and validation of an LCâ€ESIâ€MS/MS method for the quantification of Dâ€84, reboxetine and citalopram for their use in MS Binding Assays addressing the monoamine transporters hDAT, hSERT and hNET. Biomedical Chromatography, 2018, 32, e4231.	0.8	4
25	Simultaneous Multiple MS Binding Assays for the Dopamine, Norepinephrine, and Serotonin Transporters. ChemMedChem, 2018, 13, 453-463.	1.6	9
26	Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicology Letters, 2018, 293, 149-156.	0.4	15
27	Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor. Toxicology Letters, 2018, 293, 184-189.	0.4	9
28	Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity—An in vitro structure-activity analysis. Toxicology Letters, 2018, 293, 157-166.	0.4	10
29	Development of MS Binding Assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor. Toxicology Letters, 2018, 293, 172-183.	0.4	21
30	Identification of Pyrrolidineâ€3â€acetic Acid Derived Oximes as Potent Inhibitors of γâ€Aminobutyric Acid Transporterâ€1 through Library Screening with MS Binding Assays. ChemMedChem, 2018, 13, 2488-2503.	1.6	3
31	Synthesis of a Series of Nonâ€Symmetric Bispyridinium and Related Compounds and Their Affinity Characterization at the Nicotinic Acetylcholine Receptor. ChemMedChem, 2018, 13, 2653-2663.	1.6	9
32	Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a trans-alkene spacer as potent GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 5944-5961.	1.4	7
33	Novel Allosteric Ligands of γ-Aminobutyric Acid Transporter 1 (GAT1) by MS Based Screening of Pseudostatic Hydrazone Libraries. Journal of Medicinal Chemistry, 2018, 61, 10310-10332.	2.9	14
34	Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with an alkyne spacer as GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 3668-3687.	1.4	9
35	Synthesis of a Series of Structurally Diverse MB327 Derivatives and Their Affinity Characterization at the Nicotinic Acetylcholine Receptor. ChemMedChem, 2018, 13, 1806-1816.	1.6	10
36	Development of New Photoswitchable Azobenzene Based Î ³ -Aminobutyric Acid (GABA) Uptake Inhibitors with Distinctly Enhanced Potency upon Photoactivation. Journal of Medicinal Chemistry, 2018, 61, 6211-6235.	2.9	15

#	Article	IF	CITATIONS
37	New Resensitizers for the Nicotinic Acetylcholine Receptor by Ligand-Based Pharmacophore Modeling. Current Computer-Aided Drug Design, 2018, 15, 104-109.	0.8	3
38	Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives with <i>N</i> â€Arylalkynyl Substituents. ChemMedChem, 2017, 12, 362-371.	1.6	16
39	Determination of the enantiomeric purity of the selective dopamine transporter inhibitor (+)â€ <i>R,R</i> â€4â€{2â€benzhydryloxyethyl)â€1â€(4â€fluorobenzyl)piperidinâ€3â€ol. Chirality, 2017, 29, 294-	303.	2
40	Regioselective and Transition-Metal-Free Addition of tert-Butyl Magnesium Reagents to Pyridine Derivatives: A Convenient Method for the Synthesis of 3-Substituted 4-tert-Butylpyridine Derivatives. Synthesis, 2017, 49, 4055-4064.	1.2	7
41	Determination of enantiomeric excess of nipecotic acid as $1\hat{a}\in(7\hat{a}\in ircont,i)[1,2,5]$ oxadiazol $\hat{a}\in4\hat{a}\in j$ derivatives. Chirality, 2017, 29, 48-56.	1.3	4
42	Synthesis and Bioactivity of Novel N-Benzylic and N-Phenethylic Ephedrine Derivatives. Synthesis, 2017, 49, 5159-5166.	1.2	3
43	Simultaneous Multiple MS Binding Assays Addressing D ₁ and D ₂ Dopamine Receptors. ChemMedChem, 2017, 12, 1585-1594.	1.6	12
44	Synthesis of Allene Substituted Nipecotic Acids by Allenylation of Terminal Alkynes. Journal of Organic Chemistry, 2017, 82, 8371-8388.	1.7	12
45	Novel, highly potent and inÂvivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacology, 2017, 113, 331-342.	2.0	33
46	The Environment Shapes the Inner Vestibule of LeuT. PLoS Computational Biology, 2016, 12, e1005197.	1.5	16
47	Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores. PLoS ONE, 2016, 11, e0148608.	1.1	5
48	Different Binding Modes of Small and Large Binders of GAT1. ChemMedChem, 2016, 11, 509-518.	1.6	26
49	Synthesis of 4-substituted nipecotic acid derivatives and their evaluation as potential GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 2072-2096.	1.4	17
50	Synthesis and biological evaluation of a series of N -alkylated imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. European Journal of Medicinal Chemistry, 2016, 124, 852-880.	2.6	10
51	Development, validation and application of a 96-well enzymatic assay based on LC-ESI-MS/MS quantification for the screening of selective inhibitors against Mycobacterium tuberculosis purine nucleoside phosphorylase. Analytica Chimica Acta, 2016, 943, 89-97.	2.6	9
52	Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki–Miyaura Crossâ€Coupling Reactions. ChemMedChem, 2016, 11, 519-538.	1.6	24
53	A general approach to substituted diphenyldiazenes. Tetrahedron, 2016, 72, 1579-1589.	1.0	3
54	MS Binding Assays for the Three Monoamine Transporters Using the Triple Reuptake Inhibitor (1 <i>R</i> ,3 <i>S</i>)â€Indatraline as Native Marker. ChemMedChem, 2015, 10, 1027-1039.	1.6	24

#	Article	IF	CITATIONS
55	Application of MS Transport Assays to the Four Human γâ€Aminobutyric Acid Transporters. ChemMedChem, 2015, 10, 1498-1510.	1.6	11
56	MS Binding Assays for D ₁ and D ₅ Dopamine Receptors. ChemMedChem, 2015, 10, 1924-1931.	1.6	16
57	Generation and Screening of Oxime Libraries Addressing the Neuronal GABA Transporter GAT1. ChemMedChem, 2015, 10, 396-410.	1.6	29
58	Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids. Bioorganic and Medicinal Chemistry, 2015, 23, 1284-1306.	1.4	34
59	Development and validation of an LC-ESI-MS/MS method for the triple reuptake inhibitor indatraline enabling its quantification in MS Binding Assays. Analytical and Bioanalytical Chemistry, 2015, 407, 471-485.	1.9	13
60	Asymmetric synthesis of all four stereoisomers of 1-amino-3-hydroxy-cyclopentane-1-carboxylic acid. Tetrahedron, 2015, 71, 686-693.	1.0	5
61	Inter- and Intramolecular [4+2]-Cycloaddition Reactions with 4,4-Disubstituted N-Silyl-1,4-dihydropyridines as Precursors for N-Protonated 2-Azabutadiene Intermediates. Synthesis, 2014, 46, 1630-1638.	1.2	11
62	Synthesis of [² H ₇]indatraline. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 721-724.	0.5	3
63	Loratadine and Analogues: Discovery and Preliminary Structure–Activity Relationship of Inhibitors of the Amino Acid Transporter B ⁰ AT2. Journal of Medicinal Chemistry, 2014, 57, 9473-9479.	2.9	19
64	MS Transport Assays for γ-Aminobutyric Acid Transporters—An Efficient Alternative for Radiometric Assays. Analytical Chemistry, 2014, 86, 7575-7583.	3.2	7
65	Synthesis, biological evaluation and structure–activity relationship of new GABA uptake inhibitors, derivatives of 4-aminobutanamides. European Journal of Medicinal Chemistry, 2014, 83, 256-273.	2.6	17
66	First Photoswitchable Neurotransmitter Transporter Inhibitor: Light-Induced Control of Î ³ -Aminobutyric Acid Transporter 1 (GAT1) Activity in Mouse Brain. Journal of Medicinal Chemistry, 2014, 57, 6809-6821.	2.9	30
67	Shuttle–Cargo Fusion Molecules of Transport Peptides and the hD _{2/3} Receptor Antagonist Fallypride: A Feasible Approach To Preserve Ligand–Receptor Binding?. Journal of Medicinal Chemistry, 2014, 57, 4368-4381.	2.9	7
68	Conjugate Addition of Organomagnesium Cuprates to Guvacine Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4398-4409.	1.2	4
69	2-Substituted 4-hydroxybutanamides as potential inhibitors of γ-aminobutyric acid transporters mGAT1–mGAT4: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2013, 21, 5154-5167.	1.4	14
70	Enantiopurity Determination of the Enantiomers of the Triple Reuptake Inhibitor Indatraline. Chirality, 2013, 25, 923-933.	1.3	7
71	Deamination, Oxidation, and C–C Bond Cleavage Reactivity of 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxycytosine. Journal of the American Chemical Society, 2013, 135, 14593-14599.	6.6	83
72	Synthesis and biological evaluation of 4-hydroxy-4-(4-methoxyphenyl)-substituted proline and pyrrolidin-2-ylacetic acid derivatives as GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 470-484.	1.4	5

#	Article	IF	CITATIONS
73	Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 3363-3378.	1.4	26
74	Synthesis of N-substituted acyclic β-amino acids and their investigation as GABA uptake inhibitors. European Journal of Medicinal Chemistry, 2013, 65, 487-499.	2.6	18
75	Synthesis of 3â€Azabicyclo[3.2.0]heptane Derivatives as γâ€Aminobutyric Acid Analogues through Intermolecular [2+2] PhotoÂcycloaddition. European Journal of Organic Chemistry, 2013, 2013, 4017-4025.	1.2	17
76	Focused Pseudostatic Hydrazone Libraries Screened by Mass Spectrometry Binding Assay: Optimizing Affinities toward Î ³ -Aminobutyric Acid Transporter 1. Journal of Medicinal Chemistry, 2013, 56, 1323-1340.	2.9	49
77	Development and validation of an LCâ€ESIâ€MS/MS quantification method for a potential <i>γ</i> â€aminobutyric acid transporter 3 (GAT3) marker and its application in preliminary MS binding assays. Biomedical Chromatography, 2013, 27, 641-654.	0.8	2
78	Deletion of the Î ³ -Aminobutyric Acid Transporter 2 (GAT2 and SLC6A13) Gene in Mice Leads to Changes in Liver and Brain Taurine Contents. Journal of Biological Chemistry, 2012, 287, 35733-35746.	1.6	83
79	Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacological Reports, 2012, 64, 817-833.	1.5	22
80	Development of an (<i>S</i>)â€1â€{2â€{Tris(4â€methoxyphenyl)methoxy]ethyl}piperidineâ€3â€carboxylic acid [(<i>S</i>)â€SNAPâ€5114] Carba Analogue Inhibitor for Murine γâ€Aminobutyric Acid Transporter Type 4. ChemMedChem, 2012, 7, 1245-1255.	1.6	34
81	Library Screening by Means of Mass Spectrometry (MS) Binding Assays—Exemplarily Demonstrated for a Pseudostatic Library Addressing γâ€Aminobutyric Acid (GABA) Transporterâ€1 (GAT1). ChemMedChem, 2012 7, 1678-1690.	., 1.6	32
82	Synthesis and pharmacological evaluation of new 4,4-diphenylbut-3-enyl derivatives of 4-hydroxybutanamides as GABA uptake inhibitors. Acta Poloniae Pharmaceutica, 2012, 69, 157-60.	0.3	3
83	Aminomethyltetrazoles as potential inhibitors of the γ-aminobutyric acid transporters mGAT1–mGAT4: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 6492-6504.	1.4	31
84	Synthesis of a series of Î ³ -amino alcohols comprising an N-methyl isoindoline moiety and their evaluation as NMDA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5795-5799.	1.0	16
85	In Vitro and Initial In Vivo Evaluation of 68Ga-Labeled Transferrin Receptor (TfR) Binding Peptides as Potential Carriers for Enhanced Drug Transport into TfR Expressing Cells. Molecular Imaging and Biology, 2011, 13, 332-341.	1.3	25
86	Development and validation of a rapid LC-ESI-MS/MS method for quantification of fluoxetine and its application to MS binding assays. Analytical and Bioanalytical Chemistry, 2011, 400, 3505-3515.	1.9	14
87	Development of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 1483-1498.	2.6	21
88	(<i>S</i>)―and (<i>R</i>)â€Fluoxetine as Native Markers in Mass Spectrometry (MS) Binding Assays Addressing the Serotonin Transporter. ChemMedChem, 2011, 6, 1900-1908.	1.6	16
89	Synthesis and biological evaluation of new derivatives of 2-substituted 4-hydroxybutanamides as GABA uptake inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 183-190.	2.6	18
90	Synthesis of 4,4-Disubstituted Piperidine-2-carbonitriles and Piperidine-2,6-dicarbonitriles as Precursors for New α-Amino Acids. Synthesis, 2011, 2011, 3332-3342.	1.2	2

#	Article	IF	CITATIONS
91	The Glutamic Acid-Rich Protein Is a Gating Inhibitor of Cyclic Nucleotide-Gated Channels. Journal of Neuroscience, 2011, 31, 133-141.	1.7	30
92	Using short columns to speed up LC–MS quantification in MS binding assays. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1356-1364.	1.2	14
93	Generation of a 3D model for human GABA transporter hGAT-1 using molecular modeling and investigation of the binding of GABA. Journal of Molecular Modeling, 2010, 16, 155-161.	0.8	35
94	Azetidine derivatives as novel γ-aminobutyric acid uptake inhibitors: Synthesis, biological evaluation, and structure–activity relationship. European Journal of Medicinal Chemistry, 2010, 45, 2453-2466.	2.6	33
95	Synthesis of 5-Substituted 7,8-Benzomorphans by Intramolecular Cyclization of N-Protected 4,4-Disubstituted 1,4-Dihydropyridines. Synthesis, 2010, 2010, 2147.	1.2	4
96	A Rat Brain Bicistronic Gene with an Internal Ribosome Entry Site Codes for a Phencyclidine-binding Protein with Cytotoxic Activity. Journal of Biological Chemistry, 2009, 284, 2245-2257.	1.6	7
97	Asymmetric Synthesis of Pyrido[1,2-c]pyrimidinones. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 653-661.	0.3	1
98	MS Binding Assays—with MALDI toward High Throughput. ChemMedChem, 2009, 4, 1523-1528.	1.6	17
99	Regioselective addition of organomagnesium reagents to N-silyl activated nicotinic acid esters—a convenient method for the synthesis of 4,4-disubstituted 1,4-dihydronicotinates. Tetrahedron, 2009, 65, 5824-5833.	1.0	16
100	Application of an Ugi type reaction to an N-silyl-4,4-disubstituted 1,4-dihydropyridine. Tetrahedron, 2009, 65, 10463-10469.	1.0	17
101	Expanding the scope of MS binding assays to low-affinity markers as exemplified for mGAT1. Analytical and Bioanalytical Chemistry, 2008, 391, 309-316.	1.9	17
102	Synthesis and biological evaluation of aminomethylphenol derivatives as inhibitors of the murine GABA transporters mGAT1–mGAT4. European Journal of Medicinal Chemistry, 2008, 43, 2404-2411.	2.6	65
103	Electrocyclic ring-opening reactions may cause failure of enolate alkylation of 1,4-oxazin-2-one based chiral glycine equivalents. Tetrahedron, 2008, 64, 5107-5110.	1.0	1
104	Diastereoselective synthesis of β-amino acid derivatives from dihydropyridones. Tetrahedron, 2008, 64, 7273-7282.	1.0	14
105	Rearrangement of Dialkyl-2-(azetidin-3-yl)propane-1,3-dioates — A Structural Revision. Heterocycles, 2008, 75, 2981.	0.4	6
106	Asymmetric alkylation of Nâ€acylisoindolinâ€1â€ones via αâ€bromoimides: A novel route to 1â€substituted isoindolines. Journal of Heterocyclic Chemistry, 2007, 44, 575-590.	1.4	12
107	Zinc lodide as an Efficient Catalyst in the TMS-Azide Modified Passerini Reaction. Heterocycles, 2007, 74, 661.	0.4	9
108	New highly potent GABA uptake inhibitors selective forÂGAT-1Âand GAT-3Âderived from (R)- andÂ(S)-proline andÂhomologous pyrrolidine-2-alkanoic acids. European Journal of Medicinal Chemistry, 2006, 41, 809-824.	2.6	56

#	Article	IF	CITATIONS
109	Affinity ofÂ1-aryl-1,2,3,4-tetrahydroisoquinoline derivatives toÂtheÂion channel binding site ofÂtheÂNMDA receptor complex. European Journal of Medicinal Chemistry, 2006, 41, 1003-1010.	2.6	44
110	Direct synthesis of 4,4-disubstituted N-silyl-1,4-dihydropyridines. Tetrahedron, 2006, 62, 2395-2404.	1.0	22
111	MS-Binding Assays: Kinetic, Saturation, and Competitive Experiments Based on Quantitation of Bound Marker as Exemplified by the GABA Transporter mGAT1. ChemMedChem, 2006, 1, 208-217.	1.6	79
112	Synthesis and biological evaluation of new GABA-uptake inhibitors derived from proline and from pyrrolidine-2-acetic acid. European Journal of Medicinal Chemistry, 2005, 40, 231-247.	2.6	22
113	Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. European Journal of Pharmacology, 2005, 519, 43-47.	1.7	45
114	Competitive MS Binding Assays for Dopamine D2 Receptors Employing Spiperone as a Native Marker. ChemBioChem, 2005, 6, 1769-1775.	1.3	18
115	NMDA-NR2B subtype selectivity of stereoisomeric 2-(1,2,3,4-tetrahydro-1-isoquinolyl)ethanol derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2231-2234.	1.0	8
116	Stereoselective Synthesis of 1-Substi- tuted 1,2,3,4-Tetrahydro-b-carbolines by Asymmetric Electrophilic a-Amido- alkylation Reactions. Heterocycles, 2004, 63, 2747.	0.4	9
117	Synthesis of β-Amino Acids Based on Oxidative Cleavage of Dihydropyridone Derivatives. Organic Letters, 2004, 6, 3553-3556.	2.4	28
118	First asymmetric syntheses of 6-substituted nipecotic acid derivatives. Tetrahedron, 2004, 60, 307-318.	1.0	7
119	Asymmetric Synthesis with 6-tert-Butyl-5-methoxy-6-methyl-3,6-dihydro-2H-1,4-oxazin-2-one as a New Chiral Clycine Equivalent: Preparation of Enantiomerically Pure α-Tertiary and α-Quaternary α-Amino Acids. European Journal of Organic Chemistry, 2003, 2003, 1244-1263.	1.2	39
120	Asymmetric Synthesis of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines by Asymmetric Electrophilic α-Amidoalkylation Reactions. Heterocycles, 2003, 61, 299.	0.4	12
121	Generation of chiral N-acylpyridinium ions by means of silyl triflates and their diastereoselective trapping reactions: formation of N-acyldihydropyridines and N-acyldihydropyridones. Tetrahedron, 2002, 58, 6757-6770.	1.0	32
122	[3H]ifenprodil binding to NMDA receptors in porcine hippocampal brain membranes. European Journal of Pharmacology, 2000, 394, 211-219.	1.7	10
123	Asymmetric Synthesis Employing a Chiral 5-Methoxy-1,4-oxazin-2-one Derivative: Preparation of Enantiomerically Pure α-Quaternary α-Amino Acids. European Journal of Organic Chemistry, 1999, 1999, 1967-1978.	1.2	21
124	Synthesis of 4-Silyl-substituted Methyl Nicotinates via Silylcupration of N-Acylpyridinium Salts. Heterocycles, 1998, 48, 2653.	0.4	10
125	Asymmetric Electrophilic a-Amidoalkylation 6: Syntheses of Tetrahydroisoquinolines of High Enantiomeric Purity. Heterocycles, 1989, 29, 29.	0.4	19
126	Asymmetric Electrophilic a-Amidoalkylation 5: Improved Stereoselectivities through New Chiral Auxiliaries. Heterocycles, 1988, 27, 2549.	0.4	25

#	Article	IF	CITATIONS
127	Isomerization of N-Acly-1,2,5,6-tetrahydropyridines to N-Acyl-enamines by Palladium on Carbon. Heterocycles, 1987, 26, 917.	0.4	10
128	Asymmetric a-Amidoalkylation. Synthesis of a-Substituted Piperidines of High Enantiomeric Purity. Heterocycles, 1987, 26, 921.	0.4	34
129	An asymmetric synthesis of chiral 4,4-disubstituted cyclohexenones in high enantiomeric purity. Journal of Organic Chemistry, 1986, 51, 1936-1938.	1.7	63
130	An efficient asymmetric synthesis of (+)-mesembrine and related chiral 4,4-disubstituted cyclohexenones. Journal of the American Chemical Society, 1985, 107, 7776-7778.	6.6	71