
Emerson M Del Ponte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9287464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Growth Stage on Fusarium Head Blight and Deoxynivalenol Production in Wheat. Journal of Phytopathology, 2007, 155, 577-581.	1.0	121
2	From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. Phytopathology Research, 2020, 2, .	2.4	121
3	Triazole Sensitivity in a Contemporary Population of <i>Fusarium graminearum</i> from New York Wheat and Competitiveness of a Tebuconazole-Resistant Isolate. Plant Disease, 2014, 98, 607-613.	1.4	107
4	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
5	Regional and Field-Specific Factors Affect the Composition of Fusarium Head Blight Pathogens in Subtropical No-Till Wheat Agroecosystem of Brazil. Phytopathology, 2015, 105, 246-254.	2.2	106
6	Predicting Severity of Asian Soybean Rust Epidemics with Empirical Rainfall Models. Phytopathology, 2006, 96, 797-803.	2.2	93
7	Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin Journal, 2016, 9, 685-700.	1.4	86
8	Standard Area Diagrams for Aiding Severity Estimation: Scientometrics, Pathosystems, and Methodological Trends in the Last 25 Years. Phytopathology, 2017, 107, 1161-1174.	2.2	78
9	Trichothecene mycotoxin genotypes of <i>Fusarium graminearum sensu stricto</i> and <i>Fusarium meridionale</i> in wheat from southern Brazil. Plant Pathology, 2009, 58, 344-351.	2.4	73
10	Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chemistry, 2012, 132, 1087-1091.	8.2	73
11	Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Brazilian Journal of Microbiology, 2016, 47, 793-799.	2.0	69
12	Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp Pesticide Biochemistry and Physiology, 2014, 108, 21-26.	3.6	67
13	A Modelâ€based Assessment of the Impacts of Climate Variability on Fusarium Head Blight Seasonal Risk in Southern Brazil. Journal of Phytopathology, 2009, 157, 675-681.	1.0	64
14	Species composition, toxigenic potential and pathogenicity of <i><scp>F</scp>usarium graminearum</i> species complex isolates from southern <scp>B</scp> razilian rice. Plant Pathology, 2015, 64, 980-987.	2.4	64
15	A New View of Sooty Blotch and Flyspeck. Plant Disease, 2011, 95, 368-383.	1.4	59
16	Genetic population structure and trichothecene genotypes of <i>Fusarium graminearum</i> isolated from wheat in southern Brazil. Plant Pathology, 2012, 61, 289-295.	2.4	57
17	Quantitative review of fungicide efficacy trials for managing soybean rust in Brazil. Crop Protection, 2009, 28, 774-782.	2.1	56
18	A risk infection simulation model for fusarium head blight of wheat. Tropical Plant Pathology, 2005, 30, 634-642.	0.3	52

#	Article	IF	CITATIONS
19	Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in Southern Brazil. International Journal of Food Microbiology, 2011, 148, 197-201.	4.7	50
20	Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Tropical Plant Pathology, 2022, 47, 25-42.	1.5	48
21	Fitness Attributes of <i>Fusarium graminearum</i> Isolates from Wheat in New York Possessing a 3-ADON or 15-ADON Trichothecene Genotype. Phytopathology, 2014, 104, 513-519.	2.2	46
22	Quantitative Review of the Effects of Triazole and Benzimidazole Fungicides on Fusarium Head Blight and Wheat Yield in Brazil. Plant Disease, 2017, 101, 1633-1641.	1.4	43
23	Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins, 2021, 13, 725.	3.4	43
24	Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype. European Journal of Plant Pathology, 2012, 133, 621-629.	1.7	40
25	Composition and toxigenic potential of the <i>Fusarium graminearum</i> species complex from maize ears, stalks and stubble in Brazil. Plant Pathology, 2016, 65, 1185-1191.	2.4	39
26	Metaâ€analytic modelling of the incidence–yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology, 2017, 66, 460-468.	2.4	39
27	Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Tropical Plant Pathology, 2012, 37, 419-423.	1.5	38
28	Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 2019, 306, 108267.	4.7	36
29	Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests. Biosystems Engineering, 2021, 210, 129-142.	4.3	36
30	Meta-Analysis of the Relationship Between Crop Yield and Soybean Rust Severity. Phytopathology, 2015, 105, 307-315.	2.2	35
31	Accuracy and Reliability of Severity Estimates Using Linear or Logarithmic Disease Diagram Sets in True Colour or Black and White: a Study Case for Rice Brown Spot. Journal of Phytopathology, 2014, 162, 670-682.	1.0	34
32	Spatial Patterns of Fusarium Head Blight in New York Wheat Fields Suggest Role of Airborne Inoculum. Plant Health Progress, 2003, 4, .	1.4	31
33	Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 2013, 44, 89-95.	2.0	29
34	A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State. European Journal of Plant Pathology, 2018, 150, 791-796.	1.7	29
35	Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS ONE, 2017, 12, e0173915.	2.5	28
36	Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex. Current Microbiology, 2019, 76, 930-938.	2.2	28

#	Article	IF	CITATIONS
37	Meta-Analytic Modeling of the Decline in Performance of Fungicides for Managing Soybean Rust after a Decade of Use in Brazil. Plant Disease, 2018, 102, 807-817.	1.4	27
38	A new standard area diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use. Plant Pathology, 2020, 69, 495-505.	2.4	27
39	Improving sooty blotch and flyspeck severity estimation on apple fruit with the aid of standard area diagrams. European Journal of Plant Pathology, 2011, 129, 21-29.	1.7	26
40	Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp. Food Science and Technology, 0, 33, 75-80.	1.7	26
41	<i>Fusarium graminearum</i> Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Phytopathology, 2015, 105, 441-448.	2.2	26
42	Meteorological factors and Asian soybean rust epidemics: a systems approach and implications for risk assessment. Scientia Agricola, 2008, 65, 88-97.	1.2	25
43	Eficiência do controle da ferrugem asiática da soja em função do momento de aplicação sob condições de epidemia em Londrina, PR. Tropical Plant Pathology, 2009, 34, .	1.5	25
44	Species composition and genetic structure of <i>Fusarium graminearum</i> species complex populations affecting the main barley growing regions of South America. Plant Pathology, 2016, 65, 930-939.	2.4	25
45	Ubiquitous urease affects soybean susceptibility to fungi. Plant Molecular Biology, 2012, 79, 75-87.	3.9	24
46	Fitness Traits of Deoxynivalenol and Nivalenol-Producing <i>Fusarium graminearum</i> Species Complex Strains from Wheat. Plant Disease, 2018, 102, 1341-1347.	1.4	22
47	Factors affecting density of airborne Gibberella zeae inoculum. Tropical Plant Pathology, 2005, 30, 55-60.	0.3	22
48	Disease Risk, Spatial Patterns, and Incidence-Severity Relationships of Fusarium Head Blight in No-till Spring Wheat Following Maize or Soybean. Plant Disease, 2015, 99, 1360-1366.	1.4	21
49	Sensitivity and Efficacy of Boscalid, Fluazinam, and Thiophanate-Methyl for White Mold Control in Snap Bean in New York. Plant Disease, 2017, 101, 1253-1258.	1.4	21
50	Giberela do trigo: aspectos epidemiológicos e modelos de previsão. Tropical Plant Pathology, 2004, 29, 587-605.	0.3	20
51	Models and applications for risk assessment and prediction of Asian soybean rust epidemics. Tropical Plant Pathology, 2006, 31, 533-544.	0.3	20
52	Trichothecene Genotype Composition of <i>Fusarium graminearum</i> Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York. Phytopathology, 2015, 105, 695-699.	2.2	20
53	Nationwide survey reveals high diversity of Fusarium species and related mycotoxins in Brazilian rice: 2014 and 2015 harvests. Food Control, 2020, 113, 107171.	5.5	18
54	<i>Fusarium graminearum</i> Species Complex: A Bibliographic Analysis and Web-Accessible Database for Global Mapping of Species and Trichothecene Toxin Chemotypes. Phytopathology, 2022, 112, 741-751.	2.2	18

#	Article	IF	CITATIONS
55	Early-season warning of soybean rust regional epidemics using El Niño Southern/Oscillation information. International Journal of Biometeorology, 2011, 55, 575-583.	3.0	17
56	Imidazolium salts with antifungal potential for the control of head blight of wheat caused by <i>Fusarium graminearum</i> . Journal of Applied Microbiology, 2016, 121, 445-452.	3.1	17
57	Survey of mycotoxins in Southern Brazilian wheat and evaluation of immunoassay methods. Scientia Agricola, 2017, 74, 343-348.	1.2	17
58	Fiveâ€year survey uncovers extensive diversity and temporal fluctuations among fusarium head blight pathogens of wheat and barley in Brazil. Plant Pathology, 2021, 70, 426-435.	2.4	16
59	Development and evaluation of a standard area diagram set for the severity of phomopsis leaf blight on eggplant. European Journal of Plant Pathology, 2017, 149, 269-276.	1.7	15
60	Modeling Yield Losses and Fungicide Profitability for Managing Fusarium Head Blight in Brazilian Spring Wheat. Phytopathology, 2020, 110, 370-378.	2.2	15
61	CaracterÃsticas patogênicas de isolados do complexo Fusarium graminearum e de Fusarium verticillioides em sementes e plântulas de milho. Ciencia Rural, 2013, 43, 583-588.	0.5	14
62	Common resistance to Fusarium head blight in Brazilian wheat cultivars. Scientia Agricola, 2018, 75, 426-431.	1.2	14
63	Fusarium fujikuroi species complex in Brazilian rice: Unveiling increased phylogenetic diversity and toxigenic potential. International Journal of Food Microbiology, 2020, 330, 108667.	4.7	14
64	Bipolaris oryzae seed borne inoculum and brown spot epidemics in the subtropical lowland rice-growing region of Brazil. European Journal of Plant Pathology, 2015, 142, 875-885.	1.7	13
65	A White Paper on Global Wheat Health Based on Scenario Development and Analysis. Phytopathology, 2017, 107, 1109-1122.	2.2	13
66	Single and sequential applications of metconazole alone or in mixture with pyraclostrobin to improve Fusarium head blight control and wheat yield in Brazil. Tropical Plant Pathology, 2013, 38, 85-96.	1.5	12
67	First Report of the <i>Fusarium tricinctum</i> Species Complex Causing Fusarium Head Blight of Wheat in Brazil. Plant Disease, 2020, 104, 586-586.	1.4	12
68	Fusarium head blight and trichothecene production in wheat by Fusarium graminearum and F. meridionale applied alone or in mixture at post-flowering. Tropical Plant Pathology, 2015, 40, 134-140.	1.5	11
69	Differential triazole sensitivity among members of the Fusarium graminearum species complex infecting barley grains in Brazil. Tropical Plant Pathology, 2017, 42, 197-202.	1.5	11
70	A special issue on Fusarium head blight and wheat blast. Tropical Plant Pathology, 2017, 42, 143-145.	1.5	11
71	Evaluation of App-Embedded Disease Scales for Aiding Visual Severity Estimation of Cercospora Leaf Spot of Table Beet. Plant Disease, 2019, 103, 1347-1356.	1.4	11
72	Sequential Post-Heading Applications for Controlling Wheat Blast: A 9-Year Summary of Fungicide Performance in Brazil. Plant Disease, 2021, 105, 4051-4059.	1.4	11

#	Article	IF	CITATIONS
73	Development and validation of a standard area diagram set to aid assessment of severity of loquat scab on fruit. European Journal of Plant Pathology, 2014, 139, 419.	1.7	10
74	Fusarium subtropicale, sp. nov., a novel nivalenol mycotoxin–producing species isolated from barley (Hordeum vulgare) in Brazil and sister to F. praegraminearum. Mycologia, 2018, 110, 860-871.	1.9	10
75	Performance and Profitability of Fungicides for Managing Soybean White Mold: A 10-Year Summary of Cooperative Trials. Plant Disease, 2019, 103, 2212-2220.	1.4	10
76	Altitude is the main driver of coffee leaf rust epidemics: a large-scale survey in Ethiopia. Tropical Plant Pathology, 2020, 45, 511-521.	1.5	10
77	Comparative spatial analysis of the sooty blotch/flyspeck disease complex, bull's eye and bitter rots of apples. Plant Pathology, 2012, 61, 271-280.	2.4	9
78	Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis. European Journal of Plant Pathology, 2018, 150, 49-56.	1.7	9
79	Performance and Profitability of Rain-Based Thresholds for Timing Fungicide Applications in Soybean Rust Control. Plant Disease, 2020, 104, 2704-2712.	1.4	9
80	The Dominance of <i>Fusarium meridionale</i> Over <i>F. graminearum</i> Causing Gibberella Ear Rot in Brazil May Be Due to Increased Aggressiveness and Competitiveness. Phytopathology, 2021, 111, 1774-1781.	2.2	9
81	Analysis and simulation of plant disease progress curves in R: introducing the epifitter package. Phytopathology Research, 2021, 3, .	2.4	9
82	Are Demethylation Inhibitor Plus Quinone Outside Inhibitor Fungicide Premixes During Flowering Worthwhile for Fusarium Head Blight Control in Wheat? A Meta-Analysis. Plant Disease, 2021, 105, 2680-2687.	1.4	9
83	A special issue on phytopathometry — visual assessment, remote sensing, and artificial intelligence in the twenty-first century. Tropical Plant Pathology, 2022, 47, 1-4.	1.5	9
84	Controle do inóculo inicial para redução dos danos pela podridão: 'olho-de-boi' em macieiras. Revista Brasileira De Fruticultura, 2010, 32, 1044-1054.	0.5	8
85	Ārvore de decisão para classificação de ocorrências de ferrugem asiática em lavouras comerciais com base em variáveis meteorológicas. Engenharia Agricola, 2014, 34, 590-599.	0.7	8
86	Severity assessment in the Nicotiana tabacum-Xylella fastidiosa subsp. pauca pathosystem: design and interlaboratory validation of a standard area diagram set. Tropical Plant Pathology, 2020, 45, 710-722.	1.5	8
87	RGB-based phenotyping of foliar disease severity under controlled conditions. Tropical Plant Pathology, 2022, 47, 105-117.	1.5	8
88	Phenotypic and molecular characterization of the resistance to azoxystrobin and pyraclostrobin in <i>Fusarium graminearum</i> populations from Brazil. Plant Pathology, 2022, 71, 1152-1163.	2.4	8
89	Measuring plant disease severity in R: introducing and evaluating the pliman package. Tropical Plant Pathology, 2022, 47, 95-104.	1.5	8
90	Performance of dual and triple fungicide premixes for managing soybean rust across years and regions in Brazil: A metaâ€analysis. Plant Pathology, 2021, 70, 1920-1935.	2.4	7

#	Article	IF	CITATIONS
91	First Report of <i>Fusarium graminearum, F. asiaticum</i> , and <i>F. cortaderiae</i> as Head Blight Pathogens of Annual Ryegrass in Brazil. Plant Disease, 2015, 99, 1859-1859.	1.4	7
92	How much do standard area diagrams improve accuracy of visual estimates of the percentage area diseased? A systematic review and meta-analysis. Tropical Plant Pathology, 2022, 47, 43-57.	1.5	7
93	Seasonal dynamics of soil-borne inoculum and severity of Fusarium root rot of common beans affected by sequential planting of legume or cereal crops. Tropical Plant Pathology, 2015, 40, 335-338.	1.5	6
94	Genetic structure and mating type analysis of the Pyricularia oryzae population causing widespread epidemics in southern Brazil. Tropical Plant Pathology, 2016, 41, 297-305.	1.5	6
95	Incidence, Spatial Pattern and Temporal Progress of Fusarium Wilt of Bananas. Journal of Fungi (Basel,) Tj ETQq1	1	4 rgBT /Ove
96	Regional survey and identification of Bipolaris spp. associated with rice seeds in Rio Grande do Sul State, Brazil. Ciencia Rural, 2011, 41, 369-372.	0.5	6
97	Agressividade diferencial de espécies do complexo Fusarium graminearum em interação com o fungicida tebuconazole na redução do rendimento de trigo. Ciencia Rural, 2013, 43, 1569-1575.	0.5	6
98	Spatial Patterns and Associations of <i>Anastrepha fraterculus</i> (Diptera: Tephritidae) and Its Parasitoid <i>Doryctobracon areolatus</i> (Hymenoptera: Braconidae) in Organic Orchards of <i>Psidium guajava</i> and <i>Acca sellowiana</i> . Florida Entomologist, 2014, 97, 744-752.	0.5	5
99	Profitability of fungicide applications for managing soybean rust in scenarios of variable efficacy and costs: A stochastic simulation. Plant Pathology, 2021, 70, 1354-1363.	2.4	5
100	Modo de ação de fosfitos de potássio no controle da podridão olho de boi em maçã. Summa Phytopathologica, 2015, 41, 42-48.	0.1	5
101	Meio semiseletivo para recuperação e quantificação de Cryptosporiopsis perennans em maçãs. Ciencia Rural, 2010, 40, 661-665.	0.5	4
102	Infecção de sementes de trigo com Bipolaris sorokiniana pela técnica de restrição hÃdrica. Tropical Plant Pathology, 2010, 35, 253-257.	1.5	4
103	Measuring lesion attributes and analysing their spatial patterns at the leaf scale using digital image analysis. Plant Pathology, 2016, 65, 1498-1508.	2.4	4
104	Spatiotemporal spread of huanglongbing in commercial citrus orchards of Minas Gerais, Brazil. Tropical Plant Pathology, 2020, 45, 668-679.	1.5	4
105	Aggressiveness and mycotoxin production by Fusarium meridionale compared with F. graminearum on maize ears and stalks in the field. Phytopathology, 2021, , .	2.2	4
106	Web-Based System to True-Forecast Disease Epidemics. Developments in Plant Breeding, 2007, , 259-264.	0.2	4
107	Sooty blotch and flyspeck control with fungicide applications based on calendar, local IPM, and warning system. Pesquisa Agropecuaria Brasileira, 2011, 46, 697-705.	0.9	4
108	Número de gerações de um percevejo e seu parasitoide e da severidade da ferrugem asiática em soja, simulados em cenários de clima e manejo no norte do RS. Ciencia Rural, 2013, 43, 571-578.	0.5	4

#	Article	IF	CITATIONS
109	Species Identification, Genetic Diversity and Phenotypic Variation Studies on the Fusarium graminearum Complex Populations from Brazil. , 2013, , 15-29.		3
110	Regional and varietal differences in prevalence and incidence levels of Bipolaris species in Brazilian rice seedlots. Tropical Plant Pathology, 2014, 39, 349-356.	1.5	3
111	FERRUGEM DO PESSEGUEIRO:REAÇÃO DE CULTIVARES EM SISTEMA DE PRODUÇÃO INTEGRADA. Revista Brasileira De Fruticultura, 2015, 37, 83-89.	0.5	2
112	Linking Climate Variables to Large-Scale Spatial Pattern and Risk of Citrus Huanglongbing: A Hierarchical Bayesian Modeling Approach. Phytopathology, 2021, , .	2.2	2
113	Fusarium head blight of small grains in Pennsylvania: unravelling species diversity, toxin types, growth and triazole sensitivity. Phytopathology, 2021, , .	2.2	2
114	Comparing the Fungicide Sensitivity of <i>Sclerotinia sclerotiorum</i> Using Mycelial Growth and Ascospore Germination Assays. Plant Disease, 2022, 106, 360-363.	1.4	2
115	Timing of Triazole-Based Spray Schedules for Managing Mungbean Powdery Mildew in Australia: A Meta-Analysis. Plant Disease, 2022, 106, 918-924.	1.4	2
116	Web-Based System to True-Forecast Disease Epidemics — Case Study for Fusarium Head Blight of Wheat. , 2007, , 265-271.		2
117	Susceptibility levels and grouping of peach cultivars in relation to peach rust under field conditions. Acta Scientiarum - Agronomy, 2014, 36, 167.	0.6	1
118	Special issue on bacterial citrus diseases: part I. Tropical Plant Pathology, 2020, 45, 163-165.	1.5	1
119	Towards a more open and transparent plant pathology research. Tropical Plant Pathology, 2020, 45, 361-362.	1.5	1
120	Duração do perÃodo de molhamento foliar em pomares de macieira em céu aberto e sob tela antigranizo, em Vacaria-RS. Revista Brasileira De Fruticultura, 2012, 34, 451-459.	0.5	1
121	Genome Sequence of Fusarium graminearum Strain CML3066, Isolated from a Wheat Spike in Southern Brazil. Microbiology Resource Announcements, 2020, 9, .	0.6	1
122	Incidence-severity relationships in non-treated and fungicide-treated wheat head blast epidemics in Brazil. European Journal of Plant Pathology, 2022, 163, 1003-1010.	1.7	1
123	Special issue on bacterial citrus diseases: part II. Tropical Plant Pathology, 2020, 45, 557-558.	1.5	0
124	Silicon, biological seed treatment and cutting reduce the intensity of leaf spot diseases affecting <i>Lolium multiflorum</i> . Plant Pathology, 0, , .	2.4	0