Shuyang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9287421/publications.pdf

Version: 2024-02-01

16 papers	1,265 citations	11 h-index	940533 16 g-index
16	16	16	1756
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous gâ€C ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 13570-13574.	13.8	432
2	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	6.7	322
3	Aminoâ€Assisted Anchoring of CsPbBr ₃ Perovskite Quantum Dots on Porous gâ€C ₃ N ₄ for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 13758-13762.	2.0	172
4	Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. Nano Energy, 2020, 77, 105158.	16.0	83
5	Anchoring Active Pt ²⁺ /Pt ⁰ Hybrid Nanodots on gâ€C ₃ N ₄ Nitrogen Vacancies for Photocatalytic H ₂ Evolution. ChemSusChem, 2019, 12, 2029-2034.	6.8	54
6	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie - International Edition, 2020, 59, 1171-1175.	13.8	32
7	Construction of holeâ€transported MoO _{3â€<i>x</i>} coupled with CdS nanospheres for boosting photocatalytic performance via oxygenâ€defectsâ€mediated Zâ€scheme charge transfer. Applied Organometallic Chemistry, 2019, 33, e4780.	3.5	29
8	Flame Synthesized Blue TiO _{2â^'} <i>_x</i> with Tunable Oxygen Vacancies from Surface to Grain Boundary to Bulk. Small Methods, 2021, 5, e2000928.	8.6	28
9	Premixed Stagnation Flame Synthesized TiO ₂ Nanoparticles with Mixed Phases for Efficient Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14470-14479.	6.7	25
10	New Family of Plasmonic Photocatalysts without Noble Metals. Chemistry of Materials, 2019, 31, 2320-2327.	6.7	25
11	Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 3792-3801.	6.7	24
12	Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Research, 2023, 16, 4546-4553.	10.4	11
13	Super-resolution imaging of photogenerated charges on CdS/g-C ₃ N ₄ heterojunctions and its correlation with photoactivity. Nanoscale, 2022, 14, 5612-5624.	5.6	10
14	TiO2 with controllable oxygen vacancies for efficient isopropanol degradation: photoactivity and reaction mechanism. Catalysis Science and Technology, 2021, 11, 4060-4071.	4.1	9
15	Spectrally Resolved Single Particle Photoluminescence Microscopy Reveals Heterogeneous Photocorrosion Activity of Cuprous Oxide Microcrystals. Nano Letters, 2022, 22, 4654-4660.	9.1	5
16	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie, 2020, 132, 1187-1191.	2.0	4