Christopher Cutler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9286490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tale of Two Fimbriae: How Invasion of Dendritic Cells by Porphyromonas gingivalis Disrupts DC Maturation and Depolarizes the T-Cell-Mediated Immune Response. Pathogens, 2022, 11, 328.	1.2	11
2	Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontology 2000, 2022, 89, 41-50.	6.3	30
3	Exogenous and Endogenous Dendritic Cell-Derived Exosomes: Lessons Learned for Immunotherapy and Disease Pathogenesis. Cells, 2022, 11, 115.	1.8	26
4	Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants, 2021, 10, 309.	2.2	5
5	Proteomic Characterization, Biodistribution, and Functional Studies of Immune-Therapeutic Exosomes: Implications for Inflammatory Lung Diseases. Frontiers in Immunology, 2021, 12, 636222.	2.2	13
6	Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War― International Journal of Molecular Sciences, 2021, 22, 6459.	1.8	19
7	Porphyromonas gingivalis Provokes Exosome Secretion and Paracrine Immune Senescence in Bystander Dendritic Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669989.	1.8	21
8	<i>Enterococcus faecalis</i> shifts macrophage polarization toward M1-like phenotype with an altered cytokine profile. Journal of Oral Microbiology, 2021, 13, 1868152.	1.2	11
9	Role of dendritic cellâ€mediated immune response in oral homeostasis: A new mechanism of osteonecrosis of the jaw. FASEB Journal, 2020, 34, 2595-2608.	0.2	25
10	Enterococcus faecalis Induces Differentiation of Immune-Aberrant Dendritic Cells from Murine Bone Marrow-Derived Stem Cells. Infection and Immunity, 2020, 88, .	1.0	7
11	Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease <i>in vivo</i> . Journal of Extracellular Vesicles, 2020, 9, 1795362.	5.5	63
12	Invasion of Human Retinal Pigment Epithelial Cells by Porphyromonas gingivalis leading to Vacuolar/Cytosolic localization and Autophagy dysfunction In-Vitro. Scientific Reports, 2020, 10, 7468.	1.6	19
13	Oral Microbes and Mucosal Dendritic Cells, "Spark and Flame―of Local and Distant Inflammatory Diseases. International Journal of Molecular Sciences, 2020, 21, 1643.	1.8	30
14	From manual periodontal probing to digital 3â€D imaging to endoscopic capillaroscopy: Recent advances in periodontal disease diagnosis. Journal of Periodontal Research, 2019, 54, 1-9.	1.4	21
15	Disruption of Immune Homeostasis in Human Dendritic Cells via Regulation of Autophagy and Apoptosis by Porphyromonas gingivalis. Frontiers in Immunology, 2019, 10, 2286.	2.2	32
16	Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members. Npj Biofilms and Microbiomes, 2019, 5, 11.	2.9	28
17	The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. Oral Diseases, 2019, 25, 1403-1413.	1.5	41
18	Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2019, 20, 1462.	1.8	13

CHRISTOPHER CUTLER

#	Article	IF	CITATIONS
19	Systemic Antibiotic Therapy Reduces Circulating Inflammatory Dendritic Cells and Treg–Th17 Plasticity in Periodontitis. Journal of Immunology, 2019, 202, 2690-2699.	0.4	42
20	Application of radiopaque micro-particle fillers for 3-D imaging of periodontal pocket analogues using cone beam CT. Dental Materials, 2018, 34, 619-628.	1.6	3
21	Development of radiopaque, biocompatible, antimicrobial, micro-particle fillers for micro-CT imaging of simulated periodontal pockets. Dental Materials, 2018, 34, 569-578.	1.6	4
22	Oral Pathobiont Activates Anti-Apoptotic Pathway, Promoting both Immune Suppression and Oncogenic Cell Proliferation. Scientific Reports, 2018, 8, 16607.	1.6	35
23	Human IDO-competent, long-lived immunoregulatory dendritic cells induced by intracellular pathogen, and their fate in humanized mice. Scientific Reports, 2017, 7, 41083.	1.6	18
24	Erbium, Chromium:Yttriumâ€Scandiumâ€Galliumâ€Garnet Laser Effectively Ablates Singleâ€Species Biofilms on Titanium Disks Without Detectable Surface Damage. Journal of Periodontology, 2017, 88, 484-492.	1.7	21
25	Long-term sustainable dendritic cell-specific depletion murine model for periodontitis research. Journal of Immunological Methods, 2017, 449, 7-14.	0.6	3
26	Periodontal and other oral manifestations of immunodeficiency diseases. Oral Diseases, 2017, 23, 866-888.	1.5	31
27	Highâ€ŧhroughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by <i>Porphyromonas gingivalis</i> 381 and its fimbrial mutants. Molecular Oral Microbiology, 2016, 31, 78-93.	1.3	24
28	Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontology 2000, 2015, 69, 160-180.	6.3	23
29	Resistance of MMP9 and TIMP1 to endotoxin tolerance. Pathogens and Disease, 2015, 73, .	0.8	12
30	Porphyromonas gingivalis Evasion of Autophagy and Intracellular Killing by Human Myeloid Dendritic Cells Involves DC-SIGN-TLR2 Crosstalk. PLoS Pathogens, 2015, 11, e1004647.	2.1	87
31	Efficacy of 3D conforming nickel titanium rotary instruments in eliminating canal wall bacteria from oval-shaped root canals. Journal of Dentistry, 2015, 43, 597-604.	1.7	31
32	Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dental Materials, 2015, 31, 1510-1522.	1.6	86
33	Dose and time responses of vitamin D biomarkers to monthly vitamin D3 supplementation in overweight/obese African Americans with suboptimal vitamin d status: a placebo controlled randomized clinical trial. BMC Obesity, 2015, 2, 27.	3.1	23
34	Blood dendritic cells: "canary in the coal mine―to predict chronic inflammatory disease?. Frontiers in Microbiology, 2014, 5, 6.	1.5	27
35	Secondary Lymphoid Organ Homing Phenotype of Human Myeloid Dendritic Cells Disrupted by an Intracellular Oral Pathogen. Infection and Immunity, 2014, 82, 101-111.	1.0	25
36	Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen. Journal of Leukocyte Biology, 2013, 94, 281-289.	1.5	18

#	Article	IF	CITATIONS
37	Microbial Carriage State of Peripheral Blood Dendritic Cells (DCs) in Chronic Periodontitis Influences DC Differentiation, Atherogenic Potential. Journal of Immunology, 2012, 189, 3178-3187.	0.4	131
38	The Native 67-Kilodalton Minor Fimbria of <i>Porphyromonas gingivalis</i> Is a Novel Glycoprotein with DC-SIGN-Targeting Motifs. Journal of Bacteriology, 2010, 192, 4103-4110.	1.0	64
39	Porphyromonas gingivalis–dendritic cell interactions: consequences for coronary artery disease. Journal of Oral Microbiology, 2010, 2, 5782.	1.2	21
40	Targeting of DC-SIGN on Human Dendritic Cells by Minor Fimbriated <i>Porphyromonas gingivalis</i> Strains Elicits a Distinct Effector T Cell Response. Journal of Immunology, 2009, 183, 5694-5704.	0.4	73
41	Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontology 2000, 2007, 45, 35-50.	6.3	51
42	Oral Mucosal Expression of HIV-1 Receptors, Co-receptors, and α-defensins: Tableau of Resistance or Susceptibility to HIV Infection?. Advances in Dental Research, 2006, 19, 49-51.	3.6	24
43	Dendritic Cells at the Oral Mucosal Interface. Journal of Dental Research, 2006, 85, 678-689.	2.5	156
44	Fimbriated Porphyromonas gingivalis Is More Efficient than Fimbria-Deficient P. gingivalis in Entering Human Dendritic Cells In Vitro and Induces an Inflammatory Th1 Effector Response. Infection and Immunity, 2004, 72, 1725-1732.	1.0	97
45	Increase in HIV Receptors/Co-receptors/α-defensins in Inflamed Human Gingiva. Journal of Dental Research, 2004, 83, 371-377.	2.5	51
46	Antigen-presentation and the role of dendritic cells in periodontitis. Periodontology 2000, 2004, 35, 135-157.	6.3	69
47	Microorganisms as risk indicators for periodontal disease. Periodontology 2000, 2003, 32, 24-35.	6.3	143
48	Multiple Dendritic Cell (DC) Subpopulations in Human Gingiva and Association of Mature DCs with CD4+ T-cells in situ. Journal of Dental Research, 2003, 82, 736-741.	2.5	103
49	Mature Dendritic Cells Infiltrate the T Cell-Rich Region of Oral Mucosa in Chronic Periodontitis: In Situ, In Vivo, and In Vitro Studies. Journal of Immunology, 2001, 167, 4693-4700.	0.4	181
50	Association Between Periodontitis and Hyperlipidemia: Cause or Effect?. Journal of Periodontology, 1999, 70, 1429-1434.	1.7	185
51	Sublocalization of the Papillon-Lefevre syndrome locus on 11q14-q21. , 1998, 79, 134-139.		57
52	A Shortâ€Term Study of the Effects of SBHAN, a Novel Compound, on Gingival Inflammation in the Beagle Dog. Journal of Periodontology, 1997, 68, 448-455.	1.7	3
53	Genetic studies of syndromes with severe periodontitis and palmoplantar hyperkeratosis. Journal of Periodontal Research, 1997, 32, 81-89.	1.4	43
54	Hemin-induced modifications of the antigenicity and hemin-binding capacity of Porphyromonas gingivalis lipopolysaccharide. Infection and Immunity, 1996, 64, 2282-2287.	1.0	42

#	Article	IF	CITATIONS
55	Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends in Microbiology, 1995, 3, 45-51.	3.5	223
56	Phagocytosis of virulent Porphyromonas gingivalis by human polymorphonuclear leukocytes requires specific immunoglobulin G. Infection and Immunity, 1991, 59, 2097-2104.	1.0	81
57	Antibody-dependent alternate pathway of complement activation in opsonophagocytosis of Porphyromonas gingivalis. Infection and Immunity, 1991, 59, 2105-2109.	1.0	32
58	Editorial: Cellular Mechanisms of Aging and Longevity in Oral Health and Disease. Frontiers in Oral Health, 0, 3, .	1.2	1