Kochupurackal B Jinesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9286328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear Weight Update and Large Synaptic Responses in Neuromorphic Devices Comprising Pulsed-Laser-Deposited BiFeO ₃ . ACS Applied Electronic Materials, 2022, 4, 592-597.	4.3	6
2	Excitons and Trions in MoS ₂ Quantum Dots: The Influence of the Dispersing Medium. ACS Omega, 2022, 7, 6531-6538.	3.5	16
3	Resistive switching in formamidinium lead iodide perovskite nanocrystals: a contradiction to the bulk form. Journal of Materials Chemistry C, 2021, 9, 288-293.	5.5	14
4	Synthesis of nanodiamonds using liquid-phase laser ablation of graphene and its application in resistive random access memory. Carbon Trends, 2021, 3, 100023.	3.0	6
5	Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Scientific Reports, 2020, 10, 12450.	3.3	22
6	Vertical limits of resistive memory scaling: The detrimental influence of interface states. Applied Physics Letters, 2020, 116, .	3.3	3
7	Surfactant molecules make liquid phase exfoliated graphene a switching element for resistive random access memory applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 9700-9708.	2.2	2
8	Scaling of resistive random access memory devices beyond 100 nm ² : influence of grain boundaries studied using scanning tunneling microscopy. Nanotechnology, 2018, 29, 495202.	2.6	7
9	Consideration of UFET Architecture for the 5 nm Node and Beyond Logic Transistor. IEEE Journal of the Electron Devices Society, 2018, 6, 1129-1135.	2.1	12
10	Raman and scanning tunneling spectroscopic investigations on graphene-silver nanocomposites. Journal of Science: Advanced Materials and Devices, 2018, 3, 353-358.	3.1	13
11	Anisotropic Phase Formation Induced Enhancement of Resistive Switching in Bio–based Imidazolium Ionic Liquid Crystals ChemistrySelect, 2017, 2, 315-319.	1.5	4
12	Liquid phase exfoliated graphene for electronic applications. Materials Research Express, 2017, 4, 095017.	1.6	8
13	Gate controllable resistive random access memory devices using reduced graphene oxide. Applied Physics Letters, 2016, 108, .	3.3	12
14	Hybrid Perovskite Nanoparticles for Highâ€Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Advanced Materials Interfaces, 2016, 3, 1600092.	3.7	71
15	Facile strategy for the fabrication of efficient nonvolatile bistable memory devices based on polyvinylcarbazole–zinc oxide. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2414-2424.	1.8	8
16	Resistive switching in polymethyl methacrylate thin films. Organic Electronics, 2016, 29, 33-38.	2.6	42