Takao Hibi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9285579/publications.pdf

Version: 2024-02-01

567281 477307 39 881 15 29 citations h-index g-index papers 40 40 40 1297 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	A selective hybrid fluorescent sensor for fructose detection based on a phenylboronic acid and BODIPY-based hydrophobicity probe. RSC Advances, 2022, 12, 15083-15090.	3.6	4
2	Identification of quasi-stable water molecules near the Thr73–Lys13 catalytic diad of ⟨i⟩Bacillus⟨/i⟩ sp. TB-90 urate oxidase by X-ray crystallography with controlled humidity. Journal of Biochemistry, 2021, 169, 15-23.	1.7	1
3	Mutagenesis and structure-based analysis of the role of Tryptophan525 of \hat{I}^3 -glutamyltranspeptidase from Pseudomonas nitroreducens. Biochemical and Biophysical Research Communications, 2021, 534, 286-291.	2.1	2
4	Structural characterization of two solute-binding proteins for N,N $\hat{a}\in^2$ -diacetylchitobiose/N,N $\hat{a}\in^2$,N $\hat{a}\in^2$ -triacetylchitotoriose of the gram-positive bacterium, Paenibacillus sp. str. FPU-7. Journal of Structural Biology: X, 2021, 5, 100049.	1.3	0
5	Functional analysis of α-1,3-glucanase domain structure from <i>Streptomyces thermodiastaticus</i> HF3-3. Journal of General and Applied Microbiology, 2021, 67, 85-91.	0.7	0
6	Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 αâ€1,3â€glucanase from Paenibacillus glycanilyticus FH11. FEBS Journal, 2020, 287, 2524-2543.	4.7	10
7	Crystal structure of the catalytic unit of thermostable GH87 α-1,3-glucanase from Streptomyces thermodiastaticus strain HF3-3. Biochemical and Biophysical Research Communications, 2020, 533, 1170-1176.	2.1	4
8	Structural and biochemical characterisation of a novel alginate lyase from Paenibacillus sp. str. FPU-7. Scientific Reports, 2019, 9, 14870.	3.3	26
9	Crystal structure of the catalytic unit of GH 87-type α-1,3-glucanase Agl-KA from Bacillus circulans. Scientific Reports, 2019, 9, 15295.	3.3	10
10	Structural and functional characterization of a glycoside hydrolase family 3 \hat{l}^2 -N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7. Journal of Biochemistry, 2019, 166, 503-515.	1.7	5
11	Crystal structure analysis and enzymatic characterization of γ-glutamyltranspeptidase from <i>Pseudomonas nitroreducens</i> . Bioscience, Biotechnology and Biochemistry, 2019, 83, 262-269.	1.3	8
12	X-ray crystallographic analysis of the catalytic domain of \hat{l}_{\pm} -1,3-glucanase FH1 from <i>Paenibacillus glycanilyticus </i> poverexpressed in <i>Brevibacillus choshinensis </i> p. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 770-773.	0.8	3
13	Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery. PLoS ONE, 2016, 11, e0167310.	2.5	31
14	Hyperstabilization of Tetrameric <i>Bacillus</i> sp. TB-90 Urate Oxidase by Introducing Disulfide Bonds through Structural Plasticity. Biochemistry, 2016, 55, 724-732.	2.5	29
15	Microplate Assay of α-Glucosidase and Its Inhibitors Based on the Direct Reduction of Molybdosilicate by Glucose. Analytical Sciences, 2015, 31, 1291-1295.	1.6	3
16	Colorimetric determination of fructose for the high-throughput microtiter plate assay of glucose isomerase. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1057-1060.	1.3	5
17	Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis. Analyst, The, 2015, 140, 8134-8137.	3.5	18
18	Overexpression, purification, and characterization of <i>Paenibacillus</i> cell surface-expressed chitinase ChiW with two catalytic domains. Bioscience, Biotechnology and Biochemistry, 2014, 78, 624-634.	1.3	38

#	Article	IF	CITATIONS
19	Crystallization and preliminary X-ray analysis of the catalytic domains ofPaenibacillussp. strain FPU-7 cell-surface-expressed chitinase ChiW. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 350-353.	0.8	8
20	Characterization of \hat{l}_{\pm} -1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87 \hat{l}_{\pm} -1,3-glucanase. Journal of Bioscience and Bioengineering, 2014, 118, 378-385.	2.2	17
21	Intersubunit Salt Bridges with a Sulfate Anion Control Subunit Dissociation and Thermal Stabilization of <i>Bacillus</i> sp. TB-90 Urate Oxidase. Biochemistry, 2014, 53, 3879-3888.	2,5	15
22	Structural and functional analysis of the yeast $\langle i \rangle N \langle i \rangle$ -acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11821-11826.	7.1	22
23	Cooperative Degradation of Chitin by Extracellular and Cell Surface-Expressed Chitinases from Paenibacillus sp. Strain FPU-7. Applied and Environmental Microbiology, 2013, 79, 7482-7490.	3.1	66
24	Promotion Effect by $\hat{l}\mu$ -Poly-I-lysine on the Enzymatic Reaction of Glucose Oxidase with Ferricyanide Ion as an Oxidant. Analytical Sciences, 2012, 28, 657-660.	1.6	21
25	Production of N-acetyl cis-4-hydroxy-l-proline by the yeast N-acetyltransferase Mpr1. Journal of Bioscience and Bioengineering, 2012, 114, 160-165.	2.2	13
26	Kinetic Study of the Thermal Inactivation of Glucose Oxidase in the Presence of Denaturant and Stabilizer by Means of Bioelectrocatalysis Method. Analytical Sciences, 2011, 27, 979-983.	1.6	13
27	Molecular Cloning and Characterization of γ-Glutamyltranspeptidase from <i>Pseudomonas nitroreducens</i> IFO12694. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1936-1939.	1.3	20
28	Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 2009, 424, 439-448.	3.7	316
29	Crystallization and preliminary crystallographic analysis of N-acetyltransferase Mpr1 from Saccharomyces cerevisiae. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 169-172.	0.7	2
30	Crystallization and preliminary crystallographic analysis of bifunctional γ-glutamylcysteine synthetase–glutatione synthetase fromStreptococcus agalactiae. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 678-680.	0.7	4
31	Measurements of Reversible and Irreversible Inactivation Processes of a Redox Enzyme, Bilirubin Oxidase, by Electrochemical Methods Based on Bioelectrocatalysis. Analytical Sciences, 2009, 25, 1283-1288.	1.6	7
32	Reconstitution of the voltage-gated K+ channel KAT1 in planar lipid bilayers. Electrochemistry Communications, 2008, 10, 1509-1512.	4.7	4
33	Purification of the functional plant membrane channel KAT1. Biochemical and Biophysical Research Communications, 2008, 374, 465-469.	2.1	7
34	Application of Polyammonium Cations to Enzyme-immobilized Electrode: Voltammetric Behavior of Polycation-hexacyanoferrate Anion Complexes and Applicability as Electron-Transfer Mediator. Analytical Sciences, 2008, 24, 1415-1419.	1.6	6
35	Application of Polyammonium Cations to Enzyme-immobilized Electrode: Application as Enzyme Stabilizer for Bilirubin Oxidase. Analytical Sciences, 2008, 24, 1421-1424.	1.6	11
36	A Bioelectrocatalysis Method for the Kinetic Measurement of Thermal Inactivation of a Redox Enzyme, Bilirubin Oxidase. Analytical Sciences, 2008, 24, 237-241.	1.6	31

Такао Ніві

#	Article	IF	CITATIONS
37	Crystal structure of Â-glutamylcysteine synthetase: Insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15052-15057.	7.1	69
38	Escherichia coliB \hat{l}^3 -glutamylcysteine synthetase: modification, purification, crystallization and preliminary crystallographic analysis. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 316-318.	2.5	10
39	Enzymatic Assay of Histamine by Amperometric Detection of H2O2with a Peroxidase-based Sensor. Bioscience, Biotechnology and Biochemistry, 2000, 64, 1963-1966.	1.3	19