Duarte Ananias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9285389/publications.pdf

Version: 2024-02-01

		126901	79691
78	5,322	33	73
papers	citations	h-index	g-index
93	93	93	5812
75	73	73	3012
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Luminescent multifunctional lanthanides-based metal–organic frameworks. Chemical Society Reviews, 2011, 40, 926-940.	38.1	1,459
2	Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie - International Edition, 2008, 47, 1080-1083.	13.8	378
3	A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Selfâ€Assembled Europium(III) Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 6476-6479.	13.8	314
4	Allâ€Inâ€One Optical Heaterâ€Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er ³⁺ Emission and Blackbody Radiation. Advanced Materials, 2013, 25, 4868-4874.	21.0	264
5	Lanthanide–Organic Framework Nanothermometers Prepared by Sprayâ€Drying. Advanced Functional Materials, 2015, 25, 2824-2830.	14.9	252
6	Visibleâ€Light Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks. Advanced Functional Materials, 2016, 26, 8677-8684.	14.9	188
7	Photoluminescent Thermometer Based on a Phase-Transition Lanthanide Silicate with Unusual Structural Disorder. Journal of the American Chemical Society, 2015, 137, 3051-3058.	13.7	141
8	Excitation of Magnetic Dipole Transitions at Optical Frequencies. Physical Review Letters, 2015, 114, 163903.	7.8	130
9	Photoluminescent Layered Lanthanide Silicates. Journal of the American Chemical Society, 2004, 126, 10410-10417.	13.7	107
10	Novel Microporous Europium and Terbium Silicates. Journal of the American Chemical Society, 2001, 123, 5735-5742.	13.7	103
11	Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel. Catalysis Science and Technology, 2016, 6, 1515-1522.	4.1	92
12	Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies. Journal of Materials Chemistry, 2009, 19, 2618.	6.7	90
13	Novel Microporous Lanthanide Silicates with Tobermorite-Like Structure. Journal of the American Chemical Society, 2003, 125, 14573-14579.	13.7	73
14	Photoluminescent Lanthanideâ^'Organic 2D Networks:  A Combined Synchrotron Powder X-ray Diffraction and Solid-State NMR Study. Chemistry of Materials, 2007, 19, 3527-3538.	6.7	67
15	Excimer Formation in a Terbium Metal–Organic Framework Assists Luminescence Thermometry. Chemistry of Materials, 2017, 29, 9547-9554.	6.7	65
16	Effects of Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion in Ln ³⁺ â€Doped Gd ₂ O ₃ Nanotubes. Advanced Functional Materials, 2010, 20, 624-634.	14.9	62
17	Emission-Decay Curves, Energy-Transfer and Effective-Refractive Index in Gd ₂ O ₃ :Eu ³⁺ Nanorods. Journal of Physical Chemistry C, 2011, 115, 15297-15303.	3.1	62
18	Thermal Transformation of a Layered Multifunctional Network into a Metal–Organic Framework Based on a Polymeric Organic Linker. Journal of the American Chemical Society, 2011, 133, 15120-15138.	13.7	59

#	Article	IF	CITATIONS
19	Molecule-Like Eu ³⁺ -Dimers Embedded in an Extended System Exhibit Unique Photoluminescence Properties. Journal of the American Chemical Society, 2009, 131, 8620-8626.	13.7	55
20	Ratiometric mixed Eu–Tb metal–organic framework as a new cryogenic luminescent thermometer. Journal of Materials Chemistry C, 2017, 5, 10933-10937.	5.5	55
21	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	4.1	51
22	Cryogenic Nanothermometer Based on the MILâ€103(Tb,Eu) Metal–Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 1967-1971.	2.0	51
23	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
24	(Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale, 2012, 4, 5154.	5.6	49
25	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	5.5	44
26	Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals. Physical Chemistry Chemical Physics, 2013, 15, 15565.	2.8	43
27	Electronic, Structural and Functional Versatility in Tetrathiafulvaleneâ€Lanthanide Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 12636-12643.	3.3	40
28	Building Lightâ€Emitting Metalâ€Organic Frameworks by Postâ€Synthetic Modification. ChemistrySelect, 2017, 2, 136-139.	1.5	39
29	Crystal structure and temperature-dependent luminescence of a heterotetranuclear sodium–europium(<scp>iii</scp>) β-diketonate complex. Dalton Transactions, 2015, 44, 488-492.	3.3	36
30	Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid,) Tj ETQq0	0 0 rgBT /0	Ovgglock 10 T
31	Unusual full-colour phosphors: Na3LnSi3O9. Optical Materials, 2006, 28, 582-586.	3.6	34
32	Multifunctional Sodium Lanthanide Silicates: From Blue Emitters and Infrared S-Band Amplifiers to X-Ray Phosphors. Advanced Materials, 2003, 15, 980-985.	21.0	32
33	Nearâ€Infrared Ratiometric Luminescent Thermometer Based on a New Lanthanide Silicate. Chemistry - A European Journal, 2018, 24, 11926-11935.	3.3	32
34	Optical Detection of Solid-State Chiral Structures with Unpolarized Light and in the Absence of External Fields. Angewandte Chemie - International Edition, 2006, 45, 7938-7942.	13.8	31
35	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	13.7	31
36	The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. Journal of Alloys and Compounds, 2004, 374, 219-222.	5.5	30

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates:Â Na3ErSi3O9, a New Infrared Emitter. Chemistry of Materials, 2002, 14, 1767-1772.	6.7	28
38	Evolution of Photoluminescence across Dimensionality in Lanthanide Silicates. Journal of Physical Chemistry B, 2007, 111, 3576-3582.	2.6	27
39	Photoluminescent Layered Lanthanide Silicate Nanoparticles. Chemistry of Materials, 2008, 20, 205-212.	6.7	26
40	Europium Polyoxometalates Encapsulated in Silica Nanoparticles – Characterization and Photoluminescence Studies. European Journal of Inorganic Chemistry, 2013, 2013, 2877-2886.	2.0	26
41	Structure, topology, gas adsorption and photoluminescence of multifunctional porous RE3+-furan-2,5-dicarboxylate metal organic frameworks. Microporous and Mesoporous Materials, 2014, 188, 172-181.	4.4	26
42	Photoluminescence and local structure of Eu(III)-doped zirconium silicates. Journal of Alloys and Compounds, 2004, 374, 185-189.	5 . 5	23
43	Mixedâ€Metal dâ€f Phosphonate Frameworks – Photoluminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 2035-2044.	2.0	23
44	Luminescence properties of lanthanide-containing layered double hydroxides. Microporous and Mesoporous Materials, 2016, 226, 209-220.	4.4	23
45	NMR relaxivity of Ln3+-based zeolite-type materials. Journal of Materials Chemistry, 2005, 15, 3832.	6.7	22
46	Synchrotron powder structure of a new layered lanthanide-organic network. Zeitschrift FÃ $\frac{1}{4}$ r Kristallographie, 2009, 224, 261-272.	1.1	22
47	Hybrid layer-by-layer films based on lanthanide-bridged silicotungstates and poly(ethylenimine). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 302-309.	4.7	21
48	Photoluminescent layered lanthanide–organic framework based on a novel trifluorotriphosphonate organic linker. CrystEngComm, 2014, 16, 344-358.	2.6	21
49	Photoluminescent Layered Y(III) and Tb(III) Silicates Doped with Ce(III). Journal of Physical Chemistry B, 2006, 110, 15312-15316.	2.6	20
50	Photoluminescent Lanthanide-Organic Framework Based on a Tetraphosphonic Acid Linker. Crystal Growth and Design, 2017, 17, 5191-5199.	3.0	20
51	Energy Transfer and Emission Decay Kinetics in Mixed Microporous Lanthanide Silicates with Unusual Dimensionality. Journal of Physical Chemistry C, 2008, 112, 260-268.	3.1	19
52	Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry. Beilstein Journal of Nanotechnology, 2018, 9, 2775-2787.	2.8	19
53	Photoluminescent Microporous Lanthanide Silicate AVâ€21 Frameworks. Chemistry - A European Journal, 2008, 14, 8157-8168.	3. 3	18
54	Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica Chimica Acta, 2017, 455, 584-594.	2.4	16

#	Article	IF	CITATIONS
55	NMR Transversal relaxivity of aqueous suspensions of particles of Ln3+-based zeolite type materials. Dalton Transactions, 2008, , 2241.	3.3	14
56	Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous and Mesoporous Materials, 2013, 166, 50-58.	4.4	14
57	Cs+ ion exchange over lanthanide silicate Eu-AV-20: Experimental measurement and modelling. Chemical Engineering Journal, 2015, 268, 208-218.	12.7	13
58	Adsorption study of a macro-RAFT agent onto SiO 2 -coated Gd 2 O 3 :Eu 3+ nanorods: Requirements and limitations. Applied Surface Science, 2017, 394, 519-527.	6.1	12
59	Novel Microporous and Layered Luminescent Lanthanide Silicates. Materials Science Forum, 2004, 455-456, 527-531.	0.3	11
60	Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd ₂ O ₃ :Eu ³⁺ nanorods. Nanotechnology, 2008, 19, 295702.	2.6	11
61	Photoluminescent Metal–Organic Frameworks – Rapid Preparation, Catalytic Activity, and Framework Relationships. European Journal of Inorganic Chemistry, 2013, 2013, 5576-5591.	2.0	11
62	Tb/Eu-AV-9: A lanthanide silicate for the sensing and removal of cesium ions from aqueous solutions. Chemical Engineering Journal, 2016, 286, 679-688.	12.7	10
63	Photoluminescent layered Y/Er silicates. Journal of Alloys and Compounds, 2008, 451, 624-626.	5.5	9
64	Luminescent Nanothermometers Obtained by Post-Synthetic Modification of Metal-Organic Framework MIL-68. European Journal of Inorganic Chemistry, 2019, 2019, 1354-1359.	2.0	9
65	Cs + removal and optical detection by microporous lanthanide silicate Eu-AV-20 in a fixed-bed column. Chemical Engineering Journal, 2016, 286, 48-58.	12.7	8
66	Hexakis-adducts of [60]fullerene as molecular scaffolds of polynuclear spin-crossover molecules. Chemical Science, 2021, 12, 757-766.	7.4	7
67	Sandwich lanthano-silicotungstates: Structure, electrochemistry and photoluminescence properties. Polyhedron, 2013, 52, 308-314.	2.2	6
68	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	2.6	5
69	Multifunctionality and cytotoxicity of a layered coordination polymer. Dalton Transactions, 2020, 49, 3989-3998.	3.3	5
70	Rareâ€Earth Germanate Visible, Nearâ€Infrared, and Upâ€Conversion Emitters. European Journal of Inorganic Chemistry, 2018, 2018, 2444-2451.	2.0	3
71	Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 353-362.	0.8	2
72	Cryogenic Luminescent Ratiometric Thermometers Based on Tetragonal Na[LnSiO ₄]·xNaOH (Ln = Gd, Tb, Eu; x â‰^ 0.2). European Journal of Inorganic Chemistry, 2020, 2020, 1852-1859.	2.0	2

#	Article	IF	CITATIONS
73	Pyrene Tetraphosphonateâ€Based Metalâ€Organic Framework: Structure and Photoluminescence. European Journal of Inorganic Chemistry, 2020, 2020, 3565-3572.	2.0	1
74	Novel Microporous Lanthanoid Silicates with Tobermorite-Like Structure ChemInform, 2004, 35, no.	0.0	0
75	Photoluminescent Layered Lanthanide Silicates ChemInform, 2004, 35, no.	0.0	O
76	Metal-Organic Frameworks: Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying (Adv. Funct. Mater. 19/2015). Advanced Functional Materials, 2015, 25, 2939-2939.	14.9	0
77	Frontispiece: Nearâ€Infrared Ratiometric Luminescent Thermometer Based on a New Lanthanide Silicate. Chemistry - A European Journal, 2018, 24, .	3.3	0
78	Coordination Polymers Based on a Biphenyl Tetraphosphonate Linker: Synthesis Control and Photoluminescence. Molecules, 2020, 25, 1835.	3.8	O