
Alan Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9285344/publications.pdf Version: 2024-02-01

ALAN LACKSON

#	Article	IF	CITATIONS
1	Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2931-2947.	4.4	285
2	The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2024-2043.	4.4	174
3	Molecular Gas Clumps from the Destruction of Icy Bodies in the Î ² Pictoris Debris Disk. Science, 2014, 343, 1490-1492.	12.6	171
4	Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 2012, 425, 657-679.	4.4	123
5	Debris froms giant impacts between planetary embryos at large orbital radii. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3757-3777.	4.4	118
6	Lunar crater identification via deep learning. Icarus, 2019, 317, 27-38.	2.5	103
7	How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3385-3407.	4.4	74
8	Eight billion asteroids in the Oort cloud. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2059-2064.	4.4	52
9	Constraints on the pre-impact orbits of Solar system giant impactors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2924-2936.	4.4	46
10	Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3910-3917.	4.4	45
11	Insights into Planet Formation from Debris Disks. Space Science Reviews, 2016, 205, 231-265.	8.1	43
12	1I/â€~Oumuamua as an N ₂ Ice Fragment of an Exoâ€Pluto Surface II: Generation of N ₂ Ice Fragments and the Origin of â€~Oumuamua. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006807.	3.6	36
13	The spherical Brazil Nut Effect and its significance to asteroids. Icarus, 2016, 278, 194-203.	2.5	33
14	The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations. Astronomical Journal, 2018, 155, 54.	4.7	32
15	Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/â€~Oumuamua. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L49-L53.	3.3	30
16	1I/â€~Oumuamua as an N ₂ Ice Fragment of an exoâ€Pluto Surface: I. Size and Compositional Constraints. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006706.	3.6	28
17	Extreme Debris Disk Variability: Exploring the Diverse Outcomes of Large Asteroid Impacts During the Era of Terrestrial Planet Formation. Astronomical Journal, 2019, 157, 202.	4.7	23
18	Automated crater shape retrieval using weakly-supervised deep learning. Icarus, 2020, 345, 113749.	2.5	23

Alan Jackson

#	Article	IF	CITATIONS
19	Effect of Reimpacting Debris on the Solidification of the Lunar Magma Ocean. Journal of Geophysical Research E: Planets, 2018, 123, 1168-1191.	3.6	16
20	Gravity-dominated Collisions: A Model for the Largest Remnant Masses with Treatment for "Hit and Run―and Density Stratification. Astrophysical Journal, 2020, 892, 40.	4.5	16
21	Mid-infrared Studies of HD 113766 and HD 172555: Assessing Variability in the Terrestrial Zone of Young Exoplanetary Systems. Astrophysical Journal, 2020, 898, 21.	4.5	14
22	Dynamical Avenues for Mercury's Origin. I. The Lone Survivor of a Primordial Generation of Short-period Protoplanets. Astronomical Journal, 2021, 161, 240.	4.7	12
23	Can a Machine Learn the Outcome of Planetary Collisions?. Astrophysical Journal, 2019, 882, 35.	4.5	10
24	HD 145263: Spectral Observations of Silica Debris Disk Formation via Extreme Space Weathering?. Astrophysical Journal, 2020, 894, 116.	4.5	10
25	Oort cloud asteroids: collisional evolution, the Nice Model, and the Grand Tack. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5511-5518.	4.4	9
26	Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018, 18, 1106-1122.	3.0	8
27	Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature, 2021, 598, 425-428.	27.8	8
28	A Star-sized Impact-produced Dust Clump in the Terrestrial Zone of the HD 166191 System. Astrophysical Journal, 2022, 927, 135.	4.5	8
29	RW Aur A: SpeX Spectral Evidence for Differentiated Planetesimal Formation, Migration, and Destruction in an â°1⁄43 Myr Old Excited CTTS System. Astrophysical Journal, 2022, 928, 189.	4.5	3
30	M-stars Are Fast and Neat and A-stars Are Slow and Messy at Late-stage Rocky Planet Formation. Research Notes of the AAS, 2019, 3, 90.	0.7	2
31	Insights into Planet Formation from Debris Disks. Space Sciences Series of ISSI, 2016, , 273-307.	0.0	1
32	Light from Shattered Worlds: Debris from Giant Impacts. Proceedings of the International Astronomical Union, 2013, 8, 344-345.	0.0	0