## Samya Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9285104/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Targeted photoredox catalysis in cancer cells. Nature Chemistry, 2019, 11, 1041-1048.                                                                                                                                                              | 6.6 | 293       |
| 2  | Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity.<br>Accounts of Chemical Research, 2015, 48, 2075-2083.                                                                                          | 7.6 | 240       |
| 3  | Nucleusâ€Targeted Organoiridium–Albumin Conjugate for Photodynamic Cancer Therapy. Angewandte<br>Chemie - International Edition, 2019, 58, 2350-2354.                                                                                              | 7.2 | 134       |
| 4  | Recent Advances in the Design of Targeted Iridium(III) Photosensitizers for Photodynamic Therapy.<br>ChemBioChem, 2018, 19, 1574-1589.                                                                                                             | 1.3 | 133       |
| 5  | Remarkable photocytotoxicity of curcumin in HeLa cells in visible light and arresting its degradation on oxovanadium(iv) complex formation. Chemical Communications, 2012, 48, 7702.                                                               | 2.2 | 122       |
| 6  | Novel mitochondria targeted copper( <scp>ii</scp> ) complexes of ferrocenyl terpyridine and<br>anticancer active 8-hydroxyquinolines showing remarkable cytotoxicity, DNA and protein binding<br>affinity. Dalton Transactions, 2017, 46, 396-409. | 1.6 | 97        |
| 7  | Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts.<br>Angewandte Chemie - International Edition, 2021, 60, 9474-9479.                                                                            | 7.2 | 89        |
| 8  | A rhodamine-based â€~turn-on' Al <sup>3+</sup> ion-selective reporter and the resultant complex as a secondary sensor for F <sup>â^'</sup> ion are applicable to living cell staining. Dalton Transactions, 2015, 44, 8708-8717.                   | 1.6 | 76        |
| 9  | Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide( <scp>iii</scp> )<br>complex formation. Dalton Transactions, 2013, 42, 182-195.                                                                                        | 1.6 | 74        |
| 10 | Endoplasmic reticulumtargeted chemotherapeutics: the remarkable photo-cytotoxicity of an<br>oxovanadium(iv) vitamin-B6 complex in visible light. Chemical Communications, 2014, 50, 5590-5592.                                                     | 2.2 | 68        |
| 11 | Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium( <scp>iv</scp> ) moiety. Dalton Transactions, 2015, 44, 4108-4122.                                                                   | 1.6 | 61        |
| 12 | Photorelease and Cellular Delivery of Mitocurcumin from Its Cytotoxic Cobalt(III) Complex in Visible<br>Light. Inorganic Chemistry, 2016, 55, 6027-6035.                                                                                           | 1.9 | 55        |
| 13 | Selective and Sensitive Turn-on Chemosensor for Arsenite Ion at the ppb Level in Aqueous Media<br>Applicable in Cell Staining. Analytical Chemistry, 2014, 86, 11357-11361.                                                                        | 3.2 | 54        |
| 14 | BODIPY appended copper( <scp>ii</scp> ) complexes of curcumin showing mitochondria targeted remarkable photocytotoxicity in visible light. MedChemComm, 2015, 6, 846-851.                                                                          | 3.5 | 54        |
| 15 | Curcumin "Drug―Stabilized in Oxidovanadium(IV)-BODIPY Conjugates for Mitochondria-Targeted<br>Photocytotoxicity. Inorganic Chemistry, 2017, 56, 12457-12468.                                                                                       | 1.9 | 51        |
| 16 | Recent advances in endoplasmic reticulum targeting metal complexes. Coordination Chemistry Reviews, 2020, 408, 213178.                                                                                                                             | 9.5 | 50        |
| 17 | Transfer hydrogenation catalysis in cells. RSC Chemical Biology, 2021, 2, 12-29.                                                                                                                                                                   | 2.0 | 50        |
| 18 | Effect of metal oxidation state on FRET: a Cu( <scp>i</scp> ) silent but selectively Cu( <scp>ii</scp> )<br>responsive fluorescent reporter and its bioimaging applications. Dalton Transactions, 2015, 44,<br>1761-1768.                          | 1.6 | 46        |

SAMYA BANERJEE

| #  | Article                                                                                                                                                                                                                                  | IF                | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 19 | A napthelene–pyrazol conjugate: Al( <scp>iii</scp> ) ion-selective blue shifting chemosensor applicable<br>as biomarker in aqueous solution. Analyst, The, 2014, 139, 4828-4835.                                                         | 1.7               | 44        |
| 20 | Photocytotoxic Oxidovanadium(IV) Complexes of Polypyridyl Ligands Showing DNAâ€Cleavage Activity in<br>Nearâ€IR Light. European Journal of Inorganic Chemistry, 2012, 2012, 3899-3908.                                                   | 1.0               | 41        |
| 21 | Significant photocytotoxic effect of an iron( <scp>iii</scp> ) complex of a Schiff base ligand derived from vitamin B <sub>6</sub> and thiosemicarbazide in visible light. RSC Advances, 2015, 5, 29276-29284.                           | 1.7               | 40        |
| 22 | Visible light-induced cytotoxicity of a dinuclear iron(III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorganica Chimica Acta, 2016, 439, 8-17.                                                                | 1.2               | 39        |
| 23 | Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl<br>neodymium( <scp>iii</scp> ) complex of terpyridine and curcumin in cancer cells. Dalton Transactions,<br>2016, 45, 6424-6438.                              | 1.6               | 38        |
| 24 | BODIPY appended copper( <scp>ii</scp> ) complexes for cellular imaging and singlet oxygen mediated anticancer activity in visible light. RSC Advances, 2016, 6, 104474-104482.                                                           | 1.7               | 37        |
| 25 | Ligand-centred redox activation of inert organoiridium anticancer catalysts. Chemical Science, 2020, 11, 5466-5480.                                                                                                                      | 3.7               | 35        |
| 26 | Mitochondria targeting Photocytotoxic Oxidovanadium(IV) Complexes of Curcumin and<br>(Acridinyl)dipyridophenazine in Visible Light. Zeitschrift Fur Anorganische Und Allgemeine Chemie,<br>2014, 640, 1195-1204.                         | 0.6               | 34        |
| 27 | New activation mechanism for half-sandwich organometallic anticancer complexes. Chemical Science, 2018, 9, 3177-3185.                                                                                                                    | 3.7               | 34        |
| 28 | Remarkable visible light-triggered cytotoxicity of mitochondria targeting mixed-ligand<br>cobalt( <scp>iii</scp> ) complexes of curcumin and phenanthroline bases binding to human serum<br>albumin. RSC Advances, 2015, 5, 16641-16653. | 1.7               | 31        |
| 29 | Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium( <scp>iv</scp> )<br>complexes having vitamin-B6 and acridinyl moieties. Dalton Transactions, 2016, 45, 783-796.                                              | 1.6               | 30        |
| 30 | Remarkable Selectivity and Photoâ€Cytotoxicity of an Oxidovanadium(IV) Complex of Curcumin in Visible<br>Light. European Journal of Inorganic Chemistry, 2015, 2015, 447-457.                                                            | 1.0               | 28        |
| 31 | Targeted photocytotoxicity by copper(II) complexes having vitamin B 6 and photoactive acridine moieties. European Journal of Medicinal Chemistry, 2016, 122, 497-509.                                                                    | 2.6               | 26        |
| 32 | Ligand ontrolled Reactivity and Cytotoxicity of Cyclometalated Rhodium(III) Complexes. European<br>Journal of Inorganic Chemistry, 2020, 2020, 1052-1060.                                                                                | 1.0               | 26        |
| 33 | Photocytotoxic luminescent lanthanide complexes of DTPA–bisamide using quinoline as photosensitizer. RSC Advances, 2015, 5, 107503-107513.                                                                                               | 1.7               | 25        |
| 34 | Potent anticancer activity of photo-activated oxo-bridged diiron(III) complexes. European Journal of<br>Medicinal Chemistry, 2017, 125, 816-824.                                                                                         | 2.6               | 24        |
| 35 | Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts.<br>Angewandte Chemie, 2021, 133, 9560-9565.                                                                                         | 1.6               | 24        |
| 36 | A Neutral Threeâ€Membered 2ï€ Aromatic Disilaborirane and the Unique Conversion into a<br>Fourâ€Membered BSi <sub>2</sub> Nâ€Ring. Angewandte Chemie - International Edition, 2020, 59, 23015-2301                                       | 9. <sup>7.2</sup> | 23        |

SAMYA BANERJEE

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LMCT transition-based red-light photochemotherapy using a tumour-selective ferrocenyl iron( <scp>iii</scp> ) coumarin conjugate. Chemical Communications, 2020, 56, 7981-7984.                                               | 2.2 | 23        |
| 38 | Ferrocene conjugated copper(II) complexes of terpyridine and traditional Chinese medicine (TCM)<br>anticancer ligands showing selective toxicity towards cancer cells. Applied Organometallic<br>Chemistry, 2018, 32, e4287. | 1.7 | 22        |
| 39 | An ultrasound activated cyanine-rhenium( <scp>i</scp> ) complex for sonodynamic and gas synergistic therapy. Chemical Communications, 2022, 58, 3314-3317.                                                                   | 2.2 | 22        |
| 40 | Singleâ€Cell Quantification of a Highly Biocompatible Dinuclear Iridium(III) Complex for Photocatalytic<br>Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .                                            | 7.2 | 22        |
| 41 | Nucleusâ€ŧargeted organoiridiumâ€albumin conjugate for photoactivated cancer therapy. Angewandte<br>Chemie, 2018, 131, 2372.                                                                                                 | 1.6 | 20        |
| 42 | Substituent effect on fluorescence signaling of the cell permeable HSO <sub>4</sub> <sup>â^'</sup><br>receptors through single point to ratiometric response in green solvent. RSC Advances, 2014, 4,<br>27665-27673.        | 1.7 | 19        |
| 43 | Endoplasmic Reticulum: Target for Nextâ€Generation Cancer Therapy. ChemBioChem, 2018, 19, 2341-2343.                                                                                                                         | 1.3 | 19        |
| 44 | Rotational Effects within Nucleosome Core Particles on Abasic Site Reactivity. Biochemistry, 2018, 57, 3945-3952.                                                                                                            | 1.2 | 17        |
| 45 | Cyclic (Alkyl)(Amino)Carbene-Stabilized Aluminum and Gallium Radicals Based on Amidinate Scaffolds.<br>Inorganic Chemistry, 2020, 59, 11253-11258.                                                                           | 1.9 | 16        |
| 46 | Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. Chinese Chemical Letters, 2022, 33, 1907-1912.                                                                                                              | 4.8 | 16        |
| 47 | Metalâ€Based Catalytic Drug Development for Nextâ€Generation Cancer Therapy. ChemMedChem, 2021, 16, 2480-2486.                                                                                                               | 1.6 | 15        |
| 48 | A quinazoline derivative as quick-response red-shifted reporter for nanomolar Al <sup>3+</sup> and applicable to living cell staining. RSC Advances, 2014, 4, 64014-64020.                                                   | 1.7 | 14        |
| 49 | Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles. Biochemistry, 2017, 56, 14-21.                                                                         | 1.2 | 14        |
| 50 | Cellular imaging and mitochondria targeted photo-cytotoxicity in visible light by singlet oxygen using<br>a BODIPY-appended oxovanadium( <scp>iv</scp> ) DNA crosslinking agent. MedChemComm, 2016, 7,<br>1398-1404.         | 3.5 | 13        |
| 51 | Photocytotoxic ternary copper(II) complexes of histamine Schiff base and pyridyl ligands. Journal of<br>Chemical Sciences, 2016, 128, 165-175.                                                                               | 0.7 | 13        |
| 52 | Synthesis, Theory and In Vitro Photodynamic Activities of New Copper(II)â€Histidinito Complexes.<br>ChemistrySelect, 2018, 3, 2767-2775.                                                                                     | 0.7 | 13        |
| 53 | Dual-action platinum(II) Schiff base complexes: Photocytotoxicity and cellular imaging. Polyhedron, 2019, 172, 157-166.                                                                                                      | 1.0 | 13        |
| 54 | Strategies for conjugating iridium(III) anticancer complexes to targeting peptides via copper-free click chemistry. Inorganica Chimica Acta, 2020, 503, 119396.                                                              | 1.2 | 13        |

Samya Banerjee

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte<br>Chemie - International Edition, 2020, 59, 11984-11991.                                                      | 7.2 | 13        |
| 56 | Synergistic Effects of an Irreversible DNA Polymerase Inhibitor and DNA Damaging Agents on HeLa Cells. ACS Chemical Biology, 2017, 12, 1576-1583.                                                                | 1.6 | 12        |
| 57 | Cholesterol: A Key in the Pathogenesis of Alzheimer's Disease. ChemMedChem, 2018, 13, 1742-1743.                                                                                                                 | 1.6 | 11        |
| 58 | Highly Efficient Ir(III) oumarin Photoâ€Redox Catalyst for Synergetic Multiâ€Mode Cancer Photoâ€Therapy.<br>Chemistry - A European Journal, 2022, 28, .                                                          | 1.7 | 11        |
| 59 | Terpyridyl oxovanadium(IV) complexes for DNA crosslinking and mito-targeted photocytotoxicity.<br>Journal of Inorganic Biochemistry, 2017, 174, 45-54.                                                           | 1.5 | 10        |
| 60 | Crystal structure, DNA crosslinking and photo-induced cytotoxicity of oxovanadium(IV) conjugates of boron-dipyrromethene. Journal of Inorganic Biochemistry, 2020, 202, 110817.                                  | 1.5 | 10        |
| 61 | Photoinduced DNA Crosslink Formation by Dichloridooxidovanadium(IV) Complexes of Polypyridyl<br>Bases. European Journal of Inorganic Chemistry, 2015, 2015, 3986-3990.                                           | 1.0 | 9         |
| 62 | A bio-attuned ratiometric hydrogen sulfate ion selective receptor in aqueous solvent: structural proof of the H-bonded adduct. RSC Advances, 2015, 5, 4468-4474.                                                 | 1.7 | 9         |
| 63 | Polypyridyl Ruthenium(II) Complexes with Red‧hifted Absorption: New Promises in Photodynamic<br>Therapy. ChemBioChem, 2021, 22, 2407-2409.                                                                       | 1.3 | 9         |
| 64 | Os( <scp>ii</scp> ) complexes for catalytic anticancer therapy: recent update. Chemical<br>Communications, 2022, 58, 4825-4836.                                                                                  | 2.2 | 8         |
| 65 | Engineered Exosomes as a Photosensitizer Delivery Platform for Cancer Photodynamic Therapy.<br>ChemMedChem, 2022, 17, .                                                                                          | 1.6 | 8         |
| 66 | Sonodynamic Therapy with Metal Complexes: A New Promise in Cancer Therapy. ChemMedChem, 2022, 17,                                                                                                                | 1.6 | 8         |
| 67 | ROS dependent antitumour activity of photo-activated iron(III) complexes of amino acids. Journal of<br>Chemical Sciences, 2019, 131, 1.                                                                          | 0.7 | 7         |
| 68 | Vibrational Motions Make Significant Contributions to Sequential Methyl C–H Activations in an<br>Organometallic Complex. Journal of Physical Chemistry Letters, 2021, 12, 658-662.                               | 2.1 | 7         |
| 69 | Effect of cysteine thiols on the catalytic and anticancer activity of Ru( <scp>ii</scp> ) sulfonyl-ethylenediamine complexes. Dalton Transactions, 2022, 51, 4447-4457.                                          | 1.6 | 7         |
| 70 | Al3+-Ion-Triggered Conformational Isomerization of a Rhodamine B Derivative Evidenced by a<br>Fluorescence Signal - A Crystallographic Proof. European Journal of Inorganic Chemistry, 2015, 2015,<br>1383-1389. | 1.0 | 6         |
| 71 | Amidinate based indium(iii) monohalides and β-diketiminate stabilized In(ii)–In(ii) bond: synthesis, crystal<br>structure, and computational study. Dalton Transactions, 2020, 49, 14231-14236.                  | 1.6 | 6         |
| 72 | A Neutral Threeâ€Membered 2ï€ Aromatic Disilaborirane and the Unique Conversion into a<br>Fourâ€Membered BSi 2 Nâ€Ring. Angewandte Chemie, 2020, 132, 23215-23219.                                               | 1.6 | 4         |

Samya Banerjee

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Preparation and Reactivity Studies of Four and Five coordinated Amidinate Aluminum Compounds.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1735-1743.                                           | 0.6 | 4         |
| 74 | Combination of Immunotherapy and Photoâ€pyroptosis as Novel Anticancer Strategy. ChemBioChem, 2022, 23, .                                                                                                            | 1.3 | 4         |
| 75 | Inâ€Situ Oxygenâ€Evolving Photoactive Nanococktail: The Future of Hypoxic Tumour Photodynamic<br>Therapy. ChemBioChem, 2019, 20, 2322-2323.                                                                          | 1.3 | 3         |
| 76 | Singleâ€Cell Quantification of a Highly Biocompatible Dinuclear Iridium(III) Complex for Photocatalytic<br>Cancer Therapy. Angewandte Chemie, 2022, 134, .                                                           | 1.6 | 3         |
| 77 | Synthesis and computational aspects of Al( <scp>ii</scp> )–Al( <scp>ii</scp> ) and<br>Ga( <scp>ii</scp> )–Ga( <scp>ii</scp> ) dihalides based on an amidinate scaffold. Dalton Transactions,<br>2022, 51, 4898-4902. | 1.6 | 2         |
| 78 | Generation of maghemite nanocrystals from iron–sulfur centres. Dalton Transactions, 2019, 48,<br>9564-9569.                                                                                                          | 1.6 | 1         |
| 79 | Labelâ€Free Nanoimaging of Neuromelanin in the Brain by Soft Xâ€ray Spectromicroscopy. Angewandte<br>Chemie, 2020, 132, 12082-12089                                                                                  | 1.6 | 0         |