Maria Christina W W Avellar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9284775/publications.pdf Version: 2024-02-01

Maria Christina W W

#	Article	IF	CITATIONS
1	Chronic Unpredictable Stress Exacerbates Lipopolysaccharide-Induced Activation of Nuclear Factor-ÂB in the Frontal Cortex and Hippocampus via Glucocorticoid Secretion. Journal of Neuroscience, 2006, 26, 3813-3820.	3.6	238
2	Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. European Journal of Pharmacology, 2007, 559, 227-235.	3.5	105
3	Kinin B1 Receptor Up-Regulation after Lipopolysaccharide Administration: Role of Proinflammatory Cytokines and Neutrophil Influx. Journal of Immunology, 2004, 172, 1839-1847.	0.8	98
4	TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. Journal of Pineal Research, 2010, 49, no-no.	7.4	90
5	Testosterone Induces Vascular Smooth Muscle Cell Migration by NADPH Oxidase and c-Src–Dependent Pathways. Hypertension, 2012, 59, 1263-1271.	2.7	85
6	MK-801 and 7-Ni attenuate the activation of brain NF-κB induced by LPS. Neuropharmacology, 2003, 45, 1120-1129.	4.1	75
7	Corticosterone modulates noradrenalineâ€induced melatonin synthesis through inhibition of nuclear factor kappa B. Journal of Pineal Research, 2005, 38, 182-188.	7.4	74
8	Activation of Toll-Like Receptor 4 (TLR4) by In Vivo and In Vitro Exposure of Rat Epididymis to Lipopolysaccharide from Escherichia Coli1. Biology of Reproduction, 2008, 79, 1135-1147.	2.7	74
9	Bradykinin B ₁ Receptor Expression Induced by Tissue Damage in the Rat Portal Vein. Circulation Research, 2004, 94, 1375-1382.	4.5	57
10	Characterization and functions of beta defensins in the epididymis. Asian Journal of Andrology, 2007, 9, 453-462.	1.6	56
11	Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arquivos Brasileiros De Endocrinologia E Metabologia, 2009, 53, 934-945.	1.3	52
12	Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reproductive Biology and Endocrinology, 2007, 5, 29.	3.3	42
13	Amyloid βâ€peptide activates nuclear factorâ€ÎºB through an Nâ€methylâ€Dâ€aspartate signaling pathway in cultured cerebellar cells. Journal of Neuroscience Research, 2008, 86, 845-860.	2.9	39
14	Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis and Rheumatism, 2012, 64, 1848-1858.	6.7	39
15	β-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian Journal of Andrology, 2016, 18, 323.	1.6	39
16	Lipopolysaccharide and lipotheicoic acid differentially modulate epididymal cytokine and chemokine profiles and sperm parameters in experimental acute epididymitis. Scientific Reports, 2018, 8, 103.	3.3	39
17	Differential Expression and Antibacterial Activity of Epididymis Protein 2 Isoforms in the Male Reproductive Tract of Human and Rhesus Monkey (Macaca mulatta)1. Biology of Reproduction, 2004, 71, 1453-1460.	2.7	38
18	Glucocorticoid receptor in the rat epididymis: Expression, cellular distribution and regulation by steroid hormones. Molecular and Cellular Endocrinology, 2010, 325, 64-77.	3.2	37

Maria Christina W W

#	Article	IF	CITATIONS
19	Serotonin Concentration, Synthesis, Cell Origin, and Targets in the Rat Caput Epididymis During Sexual Maturation and Variations Associated With Adult Mating Status: Morphological and Biochemical Studies. Journal of Andrology, 2007, 28, 136-149.	2.0	36
20	Expression and pharmacological characterization of α1-adrenoceptors in rat seminal vesicle. European Journal of Pharmacology, 1999, 381, 141-149.	3.5	35
21	Influence of Nâ€methylâ€Dâ€aspartate receptors on ouabain activation of nuclear factorâ€₽B in the rat hippocampus. Journal of Neuroscience Research, 2012, 90, 213-228.	2.9	35
22	Molecular and pharmacological evidence for modulation of kinin B1 receptor expression by endogenous glucocorticoids hormones in rats. British Journal of Pharmacology, 2001, 132, 567-577.	5.4	32
23	Ouabain activates NFκB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology, 2013, 73, 327-336.	4.1	32
24	Effect of estrogen on muscarinic acetylcholine receptor expression in rat myometrium. Molecular and Cellular Endocrinology, 2004, 213, 139-148.	3.2	30
25	Characterization of Muscarinic Acetylcholine Receptor in Rat Sertoli Cells. Endocrinology, 2001, 142, 4701-4710.	2.8	28
26	Androgen deprivation from pre-puberty to peripuberty interferes in proteins expression in pubertal and adult rat epididymis. Reproductive Toxicology, 2013, 38, 65-71.	2.9	27
27	$\hat{I}\pm 1$ -Adrenoceptor Subtypes in Rat Epididymis and the Effects of Sexual Maturation1. Biology of Reproduction, 2002, 66, 508-515.	2.7	26
28	Catecholamine effects on human melanoma cells evoked by $\hat{I}\pm 1$ -adrenoceptors. Archives of Dermatological Research, 2004, 296, 112-119.	1.9	25
29	Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles. Molecular Reproduction and Development, 2005, 70, 255-261.	2.0	24
30	Impact of adrenalectomy and dexamethasone treatment on testicular morphology and sperm parameters in rats: insights into the adrenal control of male reproduction. Andrology, 2014, 2, 835-846.	3.5	24
31	Epididymal protease inhibitor (EPPIN) is differentially expressed in the male rat reproductive tract and immunolocalized in maturing spermatozoa. Molecular Reproduction and Development, 2012, 79, 832-842.	2.0	22
32	Effects of carbachol on rat Sertoli cell proliferation and muscarinic acetylcholine receptors regulation: an in vitro study. Life Sciences, 2004, 75, 1761-1773.	4.3	20
33	Increased expression of acetylcholine receptors in the diaphragm muscle of <i>mdx</i> mice. Muscle and Nerve, 2008, 38, 1585-1594.	2.2	20
34	Effects of androgen manipulation on α1-adrenoceptor subtypes in the rat seminal vesicle. Life Sciences, 2004, 75, 1449-1463.	4.3	19
35	Quantitative changes of nicotinic receptors in the hippocampus of dystrophin-deficient mice. Brain Research, 2012, 1483, 96-104.	2.2	19
36	Hypothyroidism in Adult Male Rats Alters Posttranscriptional Mechanisms of Luteinizing Hormone Biosynthesis. Thyroid, 2013, 23, 497-505.	4.5	18

MARIA CHRISTINA W W

#	Article	IF	CITATIONS
37	O fator de transcrição NF-kapaB nos mecanismos moleculares de ação de psicofármacos. Revista Brasileira De Psiquiatria, 2000, 22, 26-30.	1.7	17
38	Transcriptional Regulation of the Rat Bradykinin B2 Receptor Gene: Identification of a Silencer Element. Molecular Pharmacology, 2002, 62, 1344-1355.	2.3	17
39	Prevalence of Y chromosome deletions in a Brazilian population of nonobstructive azoospermic and severely oligozoospermic men. Brazilian Journal of Medical and Biological Research, 2003, 36, 787-793.	1.5	17
40	Human umbilical vein vasoconstriction induced by epinephrine acting on α1B-adrenoceptor subtype. American Journal of Obstetrics and Gynecology, 2003, 189, 1472-1480.	1.3	16
41	Novel Aspects of the Sperm-Associated Antigen 11 (SPAG11) Gene Organization and Expression in Cattle (Bos taurus)1. Biology of Reproduction, 2007, 76, 1103-1116.	2.7	16
42	Innate Immunity and Glucocorticoids: Potential Regulatory Mechanisms in Epididymal Biology. Journal of Andrology, 2011, 32, 614-624.	2.0	16
43	Immunolocalization of α1A-adrenoceptors in rat and human epididymis. Cell and Tissue Research, 2008, 332, 509-522.	2.9	15
44	Expression and function of G-protein-coupled receptorsin the male reproductive tract. Anais Da Academia Brasileira De Ciencias, 2009, 81, 321-344.	0.8	15
45	Characterization of Muscarinic Acetylcholine Receptors in the Rat Epididymis1. Biology of Reproduction, 2001, 65, 1120-1126.	2.7	14
46	Cells positive for microtubule-associated protein 1B (MAP 1B) are present along rat and human efferent ductules and epididymis. Cell and Tissue Research, 2006, 325, 125-133.	2.9	14
47	In Vivo Treatments with Fulvestrant and Anastrozole Differentially Affect Gene Expression in the Rat Efferent Ductules1. Biology of Reproduction, 2011, 84, 52-61.	2.7	14
48	Changes in Estrogen Receptor ERβ (ESR2) Expression without Changes in the Estradiol Levels in the Prostate of Aging Rats. PLoS ONE, 2015, 10, e0131901.	2.5	14
49	Muscarinic Acetylcholine Receptor Subtypes in the Male Reproductive Tract. Journal of Molecular Neuroscience, 2010, 40, 127-134.	2.3	13
50	Characterization of Muscarinic Acetylcholine Receptor in Rat Sertoli Cells. Endocrinology, 2001, 142, 4701-4710.	2.8	13
51	Androgen-dependent Protein Interactions within an Intron 1 Regulatory Region of the 20-kDa Protein Gene. Journal of Biological Chemistry, 1997, 272, 17623-17631.	3.4	12
52	Effects of testosterone on muscarinic acetylcholine receptors in the rat epididymis. Life Sciences, 2005, 77, 656-669.	4.3	12
53	Expression and localization of muscarinic acetylcholine receptor subtypes in rat efferent ductules and epididymis. Cell and Tissue Research, 2006, 323, 157-166.	2.9	12
54	In search of new paradigms for epididymal health and disease: innate immunity, inflammatory mediators, and steroid hormones. Andrology, 2019, 7, 690-702.	3.5	12

$\mathsf{MARIA}\,\mathsf{CHRISTINA}\,\mathsf{W}\,\mathsf{W}$

#	Article	IF	CITATIONS
55	Sympathetic neurotransmission in the rat testicular capsule: Functional characterization and identification of mRNA encoding α1-adrenoceptor subtypes. European Journal of Pharmacology, 2006, 543, 141-150.	3.5	11
56	Muscarinic acetylcholine receptor subtypes in the rat seminal vesicle. Molecular and Cellular Endocrinology, 2006, 247, 192-198.	3.2	10
57	Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells. Journal of Neuroinflammation, 2015, 12, 193.	7.2	10
58	Dynamic changes in the spatio-temporal expression of the β-defensin SPAG11C in the developing rat epididymis and its regulation by androgens. Molecular and Cellular Endocrinology, 2015, 404, 141-150.	3.2	10
59	Novel androgen-induced activity of an antimicrobial β-defensin: Regulation of Wolffian duct morphogenesis. Molecular and Cellular Endocrinology, 2017, 442, 142-152.	3.2	10
60	Are imidazoline receptors involved in sympathetic neurotransmission in rat vas deferens. General Pharmacology, 1996, 27, 1273-1278.	0.7	8
61	Molecular structure and transcriptional regulation by nuclear factor-l [®] B of the mouse kinin B1 receptor gene. Biological Chemistry, 2005, 386, 515-22.	2.5	8
62	Lipopolysaccharide-induced epididymitis modifies the transcriptional profile of <i>Wfdc</i> genes in miceâ€. Biology of Reproduction, 2021, 104, 144-158.	2.7	8
63	Segment-specific decrease of both catecholamine concentration and acetylcholinesterase activity are accompanied by nerve refinement in the rat cauda epididymis during sexual maturation. Journal of Andrology, 2002, 23, 374-83.	2.0	8
64	Effect of ageing on the number of neuronal noradrenaline uptake sites in the rat vas deferens. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 346, 405-409.	3.0	7
65	Dissecting EPPIN protease inhibitor domains in sperm motility and fertilizing ability: repercussions for male contraceptive development. Molecular Human Reproduction, 2021, 27, .	2.8	7
66	Cloning, expression and immunolocalization of Â1-adrenoceptor in different tissues from rhesus monkey and human male reproductive tract. Molecular Human Reproduction, 2007, 14, 85-96.	2.8	4
67	Epididymal embryonic development harbors TLR4/NFKB signaling pathway as a morphogenetic player. Journal of Reproductive Immunology, 2022, 149, 103456.	1.9	3
68	Presence of mRNA of muscle nicotinic acetylcholine receptor subunits and an É>-subunit splice variant in the mouse brain. Brain Research Bulletin, 2010, 81, 453-457.	3.0	2
69	Could α1-adrenoceptors and androgen receptors be modified by sexual maturation and testosterone in the rat testicular capsule?. Life Sciences, 2015, 141, 212-220.	4.3	2
70	Editorial: Updates and New Concepts in Regulation of Proinflammatory Gene Expression by Steroid Hormones. Frontiers in Endocrinology, 2018, 9, 191.	3.5	2
71	Epididymis. , 2019, , 807-813.		2

72 Introductory Overview of "The Epididymis: Present Progress, Future Directions" (Proceedings of the) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
73	Wolffian Duct Development. , 2018, , 256-262.		1
74	A historical summary of the Brazilian Society of Pharmacology and Experimental Therapeutics (SBFTE). Pharmacological Research, 2016, 112, 1-3.	7.1	0
75	EDITORIAL: The Special Issue "Cell Receptors and Signalingâ€ . Annual Review of Biomedical Sciences, 2009, 11, .	0.5	0
76	Macrophages in the immune-endocrine milieu of reproductive tissues. , 2022, , 243-264.		0