Kwahun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9284771/publications.pdf

Version: 2024-02-01

16 papers	356 citations	933447 10 h-index	996975 15 g-index
16	16	16	681
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes. Journal of the American Chemical Society, 2022, 144, 5274-5279.	13.7	4
2	Liquid Crystal Nanoparticle Conjugates for Scavenging Reactive Oxygen Species in Live Cells. Pharmaceuticals, 2022, 15, 604.	3.8	4
3	Determining the Cytosolic Stability of Small DNA Nanostructures <i>In Cellula</i> . Nano Letters, 2022, 22, 5037-5045.	9.1	14
4	Curvature-dependent Organic Ligand Binding on Gold Nanostars Revealed by Quantitative EELS Spectral Imaging. Microscopy and Microanalysis, 2021, 27, 3320-3322.	0.4	1
5	Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation. Nano Letters, 2020, 20, 6170-6175.	9.1	23
6	Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids. Soft Matter, 2019, 15, 2373-2380.	2.7	16
7	Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles. ACS Nano, 2018, 12, 3646-3657.	14.6	47
8	Significantly improved stability of silver nanodots via nanoparticles encapsulation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 479-486.	3.9	8
9	Lipid Bilayer Disruption by Amphiphilic Janus Nanoparticles: The Role of Janus Balance. Langmuir, 2018, 34, 12387-12393.	3.5	15
10	Interrogating Cellular Functions with Designer Janus Particles. Chemistry of Materials, 2017, 29, 1448-1460.	6.7	31
11	Janus nanoparticles for T cell activation: clustering ligands to enhance stimulation. Journal of Materials Chemistry B, 2017, 5, 4410-4415.	5.8	34
12	Janus Particles for Biomedical Applications. , 2017, , 405-449.		0
13	Remote Control of T Cell Activation Using Magnetic Janus Particles. Angewandte Chemie - International Edition, 2016, 55, 7384-7387.	13.8	57
14	Remote Control of T Cell Activation Using Magnetic Janus Particles. Angewandte Chemie, 2016, 128, 7510-7513.	2.0	9
15	Oxidant-resistant imaging and ratiometric luminescence detection by selective oxidation of silver nanodots. Chemical Communications, 2013, 49, 10908.	4.1	25
16	Autofluorescence generation and elimination: a lesson from glutaraldehyde. Chemical Communications, 2013, 49, 3028.	4.1	68