
Sebastian Gehlert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/928466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ls high-intensity interval training harmful to health?. Trends in Endocrinology and Metabolism, 2022, 33, 85-86.	7.1	4
2	Does a Hypertrophying Muscle Fibre Reprogramme its Metabolism Similar to a Cancer Cell?. Sports Medicine, 2022, 52, 2569-2578.	6.5	17
3	Repeated and Interrupted Resistance Exercise Induces the Desensitization and Re-Sensitization of mTOR-Related Signaling in Human Skeletal Muscle Fibers. International Journal of Molecular Sciences, 2022, 23, 5431.	4.1	7
4	Effects of Acute and Chronic Resistance Exercise on the Skeletal Muscle Metabolome. Metabolites, 2022, 12, 445.	2.9	9
5	Maintaining proteostasis under mechanical stress. EMBO Reports, 2021, 22, e52507.	4.5	28
6	The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients, 2021, 13, 3884.	4.1	21
7	Effects of Endurance Exercise Bouts in Hypoxia, Hyperoxia, and Normoxia on mTOR-Related Protein Signaling in Human Skeletal Muscle. Journal of Strength and Conditioning Research, 2020, 34, 2276-2284.	2.1	1
8	Acute And Chronic Resistance Exercise Differentially Modulates The Skeletal Muscle Metabolome. Medicine and Science in Sports and Exercise, 2020, 52, 508-508.	0.4	0
9	Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors. Frontiers in Physiology, 2020, 11, 781.	2.8	5
10	Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle. American Journal of Physiology - Cell Physiology, 2020, 319, C300-C312.	4.6	17
11	Synergistic effects of extracellular vesicle phenotyping and AFP in hepatobiliary cancer differentiation. Liver International, 2020, 40, 3103-3116.	3.9	20
12	Seven Weeks of Jump Training with Superimposed Whole-Body Electromyostimulation Does Not Affect the Physiological and Cellular Parameters of Endurance Performance in Amateur Soccer Players. International Journal of Environmental Research and Public Health, 2020, 17, 1123.	2.6	8
13	PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 7062.	4.1	21
14	Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Deutsche Zeitschrift Fur Sportmedizin, 2020, 71, E1-E12.	0.5	38
15	Superimposed Whole-Body Electrostimulation Augments Strength Adaptations and Type II Myofiber Growth in Soccer Players During a Competitive Season. Frontiers in Physiology, 2019, 10, 1187.	2.8	30
16	Phosphorylation of αB-crystallin and its cytoskeleton association differs in skeletal myofiber types depending on resistance exercise intensity and volume. Journal of Applied Physiology, 2019, 126, 1607-1618.	2.5	13
17	The role of the immune system in response to muscle damage. Deutsche Zeitschrift Fur Sportmedizin, 2019, 70, 242-249.	0.5	7
18	Acute alterations in the hematological and hemorheological profile induced by resistance training and possible implication for microvascular functionality. Microvascular Research, 2018, 118, 137-143.	2.5	2

SEBASTIAN GEHLERT

#	Article	IF	CITATIONS
19	Cellular activation of selected signaling proteins through resistance training—aÂtraining methodological perspective. German Journal of Exercise and Sport Research, 2018, 48, 1-12.	1.2	3
20	Resistance exercise-induced muscle fatigue is not accompanied by increased phosphorylation of ryanodine receptor 1 at serine 2843. PLoS ONE, 2018, 13, e0199307.	2.5	4
21	Gp38+ hepatic progenitor cell-derived large extracellular vesicles in biliary cancers – a novel liquid biopsy marker?. Journal of Hepatology, 2018, 68, S426-S427.	3.7	0
22	Constant And Progressive Resistance Exercise Reduces Anabolic Signaling But Inreased Myofiber Hypertrophy In Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2018, 50, 809.	0.4	0
23	Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. Journal of Hepatology, 2017, 67, 282-292.	3.7	123
24	Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men. Endocrine Research, 2017, 42, 325-330.	1.2	12
25	Endurance Exercise in Hypoxia, Hyperoxia and Normoxia: Mitochondrial and Global Adaptations. International Journal of Sports Medicine, 2017, 38, 588-596.	1.7	4
26	The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 62-75.	4.1	49
27	p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle. PLoS ONE, 2017, 12, e0176609.	2.5	16
28	Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres. International Journal of Molecular Sciences, 2016, 17, 646.	4.1	7
29	Different Training-Induced Skeletal Muscle Adaptations in COPD Patients with and without Alpha-1 Antitrypsin Deficiency. Respiration, 2016, 92, 339-347.	2.6	22
30	Pulmonary Rehabilitation Improves Exercise Capacity And Molecular Skeletal Muscle Adaptation In Pulmonary Emphysema Patients. Medicine and Science in Sports and Exercise, 2016, 48, 837.	0.4	0
31	Preservation And Cessation Of Resistance Exercise Modulates Desensitization And Sensitization Of Anabolic Skeletal Muscle Signaling. Medicine and Science in Sports and Exercise, 2015, 47, 94.	0.4	0
32	Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy, 2015, 11, 538-546.	9.1	140
33	Ca2+-Dependent Regulations and Signaling in Skeletal Muscle: From Electro-Mechanical Coupling to Adaptation. International Journal of Molecular Sciences, 2015, 16, 1066-1095.	4.1	130
34	Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed wholeâ€body vibrations. Clinical Physiology and Functional Imaging, 2015, 35, 425-435.	1.2	16
35	High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Archiv European Journal of Physiology, 2015, 467, 1343-1356.	2.8	59
36	Differences in training response between patients with alpha-1 antitrypsin deficiency and COPD patients. , 2015, , .		0

SEBASTIAN GEHLERT

#	Article	IF	CITATIONS
37	Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Research, 2014, 12, 742-753.	0.7	49
38	High Exercise Intensity Increases Myocellular Signaling In Resistance Exercise Modes Equalized For Time Under Tension. Medicine and Science in Sports and Exercise, 2014, 46, 306-307.	0.4	0
39	Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide. International Journal of Molecular Sciences, 2013, 14, 7109-7139.	4.1	63
40	Training-induced alterations of skeletal muscle mitochondrial biogenesis proteins in non-insulin-dependent type 2 diabetic men. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1634-1641.	1.4	7
41	Cycling exercise-induced myofiber transitions in skeletal muscle depend on basal fiber type distribution. European Journal of Applied Physiology, 2012, 112, 2393-2402.	2.5	15
42	Intense Resistance Exercise Induces Early and Transient Increases in Ryanodine Receptor 1 Phosphorylation in Human Skeletal Muscle. PLoS ONE, 2012, 7, e49326.	2.5	32
43	Akt And Erk Phosphorylation In Skeletal Muscle In Response To Different Modes Of Resistance Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 410-411.	0.4	0
44	Improved Vascular, Immunological And Oxidative Stress Parameters In Hiv-positive Men Towards Endurance Training. Medicine and Science in Sports and Exercise, 2011, 43, 337.	0.4	0
45	Exercise Induced Slow And Fast Myofiber Transitions In Response To Low Intensive Endurance Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 291.	0.4	Ο
46	Endurance Exercise Induced Decrease Of Lyve-1 Initial Lymphatic Vessels In Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2010, 42, 311.	0.4	0
47	Exercise-Induced Decline in the Density of LYVE-1-Positive Lymphatic Vessels in Human Skeletal Muscle. Lymphatic Research and Biology, 2010, 8, 165-173.	1.1	12
48	Mitochondrial Adaptation Signaling In Human Skeletal Muscle Under Volume Oriented And Constant Cycling Training. Medicine and Science in Sports and Exercise, 2009, 41, 134-135.	0.4	0
49	Determination Of Energy Profile In Road Cycling Using Experimental Tests In Combination With Computer Assisted Analysis Of Energy Metabolism. Medicine and Science in Sports and Exercise, 2005, 37, S83.	0.4	0