
Jonas Thor Snaebjornsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9284431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bridge buffeting by skew winds: A revised theory. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220, 104806.	1.7	4
2	Recent Advancement in Assessment and Control of Structures under Multi-Hazard. Applied Sciences (Switzerland), 2022, 12, 5118.	1.3	4
3	Bridge buffeting by skew winds: A quasi-steady case study. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227, 105068.	1.7	2
4	Effects of different empirical ground motion models on seismic hazard maps for North Iceland. Soil Dynamics and Earthquake Engineering, 2021, 148, 106513.	1.9	6
5	Observations of bridge stay cable vibrations in dry and wet conditions: A case study. Journal of Sound and Vibration, 2021, 503, 116106.	2.1	10
6	Aerodynamic study of a suspension bridge deck by CFD simulations, wind tunnel tests and full-scale observations. IOP Conference Series: Materials Science and Engineering, 2021, 1201, 012007.	0.3	2
7	Dual lidar wind measurements along an upstream horizontal line perpendicular to a suspension bridge. IOP Conference Series: Materials Science and Engineering, 2021, 1201, 012008.	0.3	4
8	Data-driven prediction of mean wind turbulence from topographic data. IOP Conference Series: Materials Science and Engineering, 2021, 1201, 012005.	0.3	0
9	The influence of terrain on the mean wind flow characteristics in a fjord. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205, 104331.	1.7	15
10	Improved longâ€span bridge modeling using dataâ€driven identification of vehicleâ€induced vibrations. Structural Control and Health Monitoring, 2020, 27, e2574.	1.9	12
11	Bayesian inference of empirical ground motion models to pseudo-spectral accelerations of south Iceland seismic zone earthquakes based on informative priors. Soil Dynamics and Earthquake Engineering, 2020, 132, 106075.	1.9	21
12	Identifying Traffic-Induced Vibrations of a Suspension Bridge: A Modelling Approach Based on Full-Scale Data. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 93-101.	0.3	1
13	A Study of Suspension Bridge Vibrations Induced by Heavy Vehicles. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 115-123.	0.3	0
14	Damping Estimation from Full-Scale Traffic-Induced Vibrations of a Suspension Bridge. , 2019, , .		3
15	Flow distortion recorded by sonic anemometers on a long-span bridge: Towards a better modelling of the dynamic wind load in full-scale. Journal of Sound and Vibration, 2019, 450, 214-230.	2.1	17
16	Geological challenges and geohazard monitoring of a mega engineering hydropower project in Iceland. Engineering Geology, 2019, 259, 105152.	2.9	8
17	Calibration of ground motion models to Icelandic peak ground acceleration data using Bayesian Markov Chain Monte Carlo simulation. Bulletin of Earthquake Engineering, 2019, 17, 2841-2870.	2.3	25
18	Flow Distortion Recorded by Sonic Anemometers on a Long-Span Bridge. Lecture Notes in Civil Engineering, 2019, , 192-206.	0.3	1

#	Article	IF	CITATIONS
19	On the Manifestation of Ground Motion Model Differences on Seismic Hazard Sensitivity in North Iceland. Geotechnical, Geological and Earthquake Engineering, 2019, , 11-24.	0.1	0
20	Systematic Methodology for Planning and Evaluation of a Multi-source Geohazard Monitoring System. Application of a Reusable Template. Geotechnical, Geological and Earthquake Engineering, 2019, , 385-401.	0.1	0
21	Coupled aerodynamic and hydrodynamic response of a long span bridge suspended from floating towers. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177, 19-31.	1.7	19
22	Surface Strain Rate Tensor Field for Iceland Based on a GPS Network. Geotechnical, Geological and Earthquake Engineering, 2018, , 175-191.	0.1	0
23	Complementary use of wind lidars and land-based met-masts for wind measurements in a wide fjord. Journal of Physics: Conference Series, 2018, 1104, 012028.	0.3	2
24	Statistical Model for Dam-Settlement Prediction and Structural-Health Assessment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	19
25	Assessing the potential of a commercial pulsed lidar for wind characterisation at a bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 161, 17-26.	1.7	23
26	Time-Domain Analysis of Wind-Induced Response of a Suspension Bridge in Comparison With the Full-Scale Measurements. , 2017, , .		2
27	Full-scale observation of the flow downstream of a suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171, 261-272.	1.7	14
28	Damping estimation of large wind-sensitive structures. Procedia Engineering, 2017, 199, 2047-2053.	1.2	19
29	Strength and stiffness of glulam beams reinforced with glass and basalt fibres. Composites Part B: Engineering, 2017, 115, 300-307.	5.9	39
30	Full-scale monitoring of wind and suspension bridge response. IOP Conference Series: Materials Science and Engineering, 2017, 276, 012007.	0.3	5
31	Measurements of Surface-Layer Turbulence in a Wide Norwegian Fjord Using Synchronized Long-Range Doppler Wind Lidars. Remote Sensing, 2017, 9, 977.	1.8	18
32	Temperature Effects on the Modal Properties of a Suspension Bridge. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 87-93.	0.3	15
33	Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence. Experiments in Fluids, 2016, 57, 1.	1.1	20
34	Buffeting response of a suspension bridge in complex terrain. Engineering Structures, 2016, 128, 474-487.	2.6	84
35	Interrelations in multi-source geohazard monitoring for safety management of infrastructure systems. Structure and Infrastructure Engineering, 2016, 12, 327-355.	2.0	7
			-

#	Article	IF	CITATIONS
37	Full scale monitoring of wind and traffic induced response of a suspension bridge. MATEC Web of Conferences, 2015, 24, 04003.	0.1	4
38	Assessment of Wind Conditions at a Fjord Inlet by Complementary Use of Sonic Anemometers and Lidars. Energy Procedia, 2015, 80, 411-421.	1.8	4
39	Methodology for geohazard assessment for hydropower projects. Natural Hazards, 2015, 79, 1299-1331.	1.6	8
40	A note on the M w 6.3 earthquake in Iceland on 29 May 2008Âat 15:45 UTC. Bulletin of Earthquake Engineering, 2009, 7, 113-126.	2.3	38
41	Macroseismic effects related to strong ground motion: a study of the South Iceland earthquakes in June 2000. Bulletin of Earthquake Engineering, 2007, 5, 591-608.	2.3	13
42	Probabilistic assessment of road vehicle safety in windy environments. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95, 1445-1462.	1.7	68
43	Modelling surface pressure fluctuations on medium-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94, 845-858.	1.7	7
44	Probabilistic assessment of wind related accidents of road vehicles: A reliability approach. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76, 1079-1090.	1.7	32
45	Full-scale results of wind-induced motion in multi-story buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42, 1113-1123.	1.7	1
46	Wind structure over postglacial lava surface. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41, 305-315.	1.7	0
47	Wind-induced accelerations of a building: a case study. Engineering Structures, 1991, 13, 268-280.	2.6	5
48	Dynamic Characteristics of Multi-Story Reinforced Concrete Buildings. Solid State Phenomena, 0, 249, 235-240.	0.3	2
49	Basalt Fibers as New Material for Reinforcement and Confinement of Concrete. Solid State Phenomena, 0, 249, 79-84.	0.3	12