
Claudio Zaccone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9284112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling X-ray Absorption and Raman Spectroscopies to Characterize Iron Species in a Karst Pedosedimentary Record. Soil Systems, 2022, 6, 24.	2.6	2
2	Iron speciation in soil size fractions under different land uses. Geoderma, 2022, 418, 115842.	5.1	8
3	Human impact on C/N/P accumulation in lake sediments from northeast China during the last 150 years. Environmental Pollution, 2021, 271, 116345.	7.5	23
4	Wild whale faecal samples as a proxy of anthropogenic impact. Scientific Reports, 2021, 11, 5822.	3.3	7
5	Validating the regional estimates of changes in soil organic carbon by using the data from paired-sites: the case study of Mediterranean arable lands. Carbon Balance and Management, 2021, 16, 19.	3.2	3
6	Pedosedimentary and microbial investigation of a karst sequence record. Science of the Total Environment, 2021, , 151297.	8.0	1
7	Holocene vegetation history and human impact in the eastern Italian Alps: a multi-proxy study on the Coltrondo peat bog, Comelico Superiore, Italy. Vegetation History and Archaeobotany, 2020, 29, 407-426.	2.1	7
8	Source apportionment of priority PAHs in 11 lake sediment cores from Songnen Plain, Northeast China. Water Research, 2020, 168, 115158.	11.3	43
9	Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils. Science of the Total Environment, 2020, 748, 141125.	8.0	15
10	Selected Plant-Related Papers from the First Joint Meeting on Soil and Plant System Sciences (SPSS) Tj ETQq0 (9, 1132.	0 0 rgBT /Ov 3.5	verlock 10 Tf 1
11	Carbon and nitrogen accumulation rates in ombrotrophic peatlands of central and northern Alberta, Canada, during the last millennium. Biogeochemistry, 2020, 151, 251-272.	3.5	6
12	Iron Speciation in Organic Matter Fractions Isolated from Soils Amended with Biochar and Organic Fertilizers. Environmental Science & Technology, 2020, 54, 5093-5101.	10.0	24
13	Iron(III) fate after complexation with soil organic matter in fine silt and clay fractions: An EXAFS spectroscopic approach. Soil and Tillage Research, 2020, 200, 104617.	5.6	21
14	Natural Mn-todorokite as an efficient and green azo dye–degradation catalyst. Environmental Science and Pollution Research, 2020, 27, 9835-9842.	5.3	5
15	Comment on: "A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: Priority pollutants (Pb, Cd, Hg)―by Ewa Miszczak, Sebastian Stefaniak, Adam Michczyński, Eiliv Steinnes and Irena Twardowska. Science of the Total Environment. 2020. 737. 138699.	8.0	8
16	Molecular characterization of ombrotrophic peats by humeomics. Chemical and Biological Technologies in Agriculture, 2020, 7, .	4.6	9
17	Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing. Scientific Reports, 2019, 9, 10146.	3.3	28
18	Ecosystem type effects on the stabilization of organic matter in soils: Combining size fractionation with sequential chemical extractions. Geoderma, 2019, 353, 423-434.	5.1	23

CLAUDIO ZACCONE

#	Article	IF	CITATIONS
19	The role of Fe(III) in soil organic matter stabilization in two size fractions having opposite features. Science of the Total Environment, 2019, 653, 667-674.	8.0	30
20	Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies. Quaternary Science Reviews, 2018, 185, 230-243.	3.0	39
21	Testate amoeba records indicate regional 20thâ€century lowering of water tables in ombrotrophic peatlands in centralâ€northern Alberta, Canada. Global Change Biology, 2018, 24, 2758-2774.	9.5	29
22	Metataxonomy and functionality of wood-tar degrading microbial consortia. Journal of Hazardous Materials, 2018, 353, 108-117.	12.4	9
23	Preface—special issue in memory of Frank J. Stevenson. Journal of Soils and Sediments, 2018, 18, 1209-1211.	3.0	2
24	Methylated arsenic species throughout a 4-m deep core from a free-floating peat island. Science of the Total Environment, 2018, 621, 67-74.	8.0	10
25	Soil resources and element stocks in drylands to face global issues. Scientific Reports, 2018, 8, 13788.	3.3	126
26	Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biology and Fertility of Soils, 2018, 54, 671-681.	4.3	48
27	Advances in the determination of humification degree in peat since : Applications in geochemical and paleoenvironmental studies. Earth-Science Reviews, 2018, 185, 163-178.	9.1	50
28	Unravelling (maize silage) digestate features throughout a full-scale plant: A spectroscopic and thermal approach. Journal of Cleaner Production, 2018, 193, 372-378.	9.3	26
29	DNA occurrence in organic matter fractions isolated from amended, agricultural soils. Applied Soil Ecology, 2018, 130, 134-142.	4.3	18
30	High-resolution age modelling of peat bogs from northern Alberta, Canada, using pre- and post-bomb 14C, 210Pb and historical cryptotephra. Quaternary Geochronology, 2018, 47, 138-162.	1.4	25
31	Soil Organic Matter in Dryland Ecosystems. , 2018, , 39-70.		16
32	Trace metals in the dissolved fraction (< 0.45 μm) of the lower Athabasca River: Analytical challenges and environmental implications. Science of the Total Environment, 2017, 580, 660-669.	8.0	74
33	Peat Bogs Document Decades of Declining Atmospheric Contamination by Trace Metals in the Athabasca Bituminous Sands Region. Environmental Science & Technology, 2017, 51, 6237-6249.	10.0	54
34	Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data. Ecological Indicators, 2017, 78, 19-25.	6.3	29
35	Rapid peat accumulation favours the occurrence of both fen and bog microbial communities within a Mediterranean, free-floating peat island. Scientific Reports, 2017, 7, 8511.	3.3	9
36	Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Scientific Reports, 2017, 7, 43040.	3.3	22

CLAUDIO ZACCONE

#	Article	IF	CITATIONS
37	Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss. Atmospheric Environment, 2017, 167, 656-664.	4.1	10
38	Response to Editor to the comment by Delarue (2016) to our paper entitled â€~Persistent high temperature and low precipitation reduce peat carbon accumulation'. Global Change Biology, 2017, 23, e7-e8.	9.5	0
39	Persistent high temperature and low precipitation reduce peat carbon accumulation. Global Change Biology, 2016, 22, 4114-4123.	9.5	95
40	Dust is the dominant source of "heavy metals―to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta. Environment International, 2016, 92-93, 494-506.	10.0	73
41	Response of different soil organic matter pools to biochar and organic fertilizers. Agriculture, Ecosystems and Environment, 2016, 225, 150-159.	5.3	93
42	Peat bogs in northern Alberta, Canada reveal decades of declining atmospheric Pb contamination. Geophysical Research Letters, 2016, 43, 9964-9974.	4.0	64
43	Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environmental Science & Technology, 2016, 50, 1711-1720.	10.0	109
44	Man versus nature: Natural and anthropogenic footprints recorded in the soil archives. Catena, 2015, 132, 69-71.	5.0	0
45	Response to Comment on " <i>Sphagnum</i> Mosses from 21 Ombrotrophic Bogs in the Athabasca Bituminous Sands Region Show No Significant Atmospheric Contamination of â€~Heavy Metals'â€∙ Environmental Science & Technology, 2015, 49, 6354-6357.	10.0	6
46	Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1year of growth of Sphagnum moss from four ombrotrophic bogs in southern Germany: Geochemical significance and environmental implications. Geochimica Et Cosmochimica Acta, 2015, 163, 101-125.	3.9	44
47	Soils and palaeosols as archives of natural and anthropogenic environmental changes. European Journal of Soil Science, 2014, 65, 403-405.	3.9	2
48	Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. European Journal of Forest Research, 2014, 133, 347-354.	2.5	40
49	Changes in bacterial and archaeal community assemblages along an ombrotrophic peat bog profile. Biology and Fertility of Soils, 2014, 50, 815-826.	4.3	14
50	Elemental Composition Analysis of Plants and Composts Used for Soil Remediation by Laserâ€Induced Breakdown Spectroscopy. Clean - Soil, Air, Water, 2014, 42, 791-798.	1.1	19
51	<i>Sphagnum</i> Mosses from 21 Ombrotrophic Bogs in the Athabasca Bituminous Sands Region Show No Significant Atmospheric Contamination of "Heavy Metals― Environmental Science & Technology, 2014, 48, 12603-12611.	10.0	90
52	Effects of several amendments on organic melon growth and production, Meloidogyne incognita population and soil properties. Scientia Horticulturae, 2014, 180, 156-160.	3.6	16
53	Ptaquiloside in Pteridium aquilinum subsp. aquilinum and corresponding soils from the South of Italy: Influence of physical and chemical features of soils on its occurrence. Science of the Total Environment, 2014, 496, 365-372.	8.0	8
54	Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica Et Cosmochimica Acta, 2014, 137, 134-146.	3.9	58

#	Article	IF	CITATIONS
55	Trace Elements and Food Safety. , 2014, , 339-370.		2

The first continuous Late Glacial $\hat{a} \in Holocene peat bog multi-proxy record from the Dolomites (NE) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 22$

57	Comparative evaluation of the mineralogical composition of Sphagnum peat and their corresponding humic acids, and implications for understanding past dust depositions. Quaternary International, 2013, 306, 80-87.	1.5	15
58	The Fate of Mineral Particles in Bulk Peat and Corresponding Humic Acids Throughout an Ombrotrophic Bog Profile: Atmospheric Dust Depositions vs Mineralization Processes. , 2013, , 61-65.		0
59	Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study. Journal of Environmental Monitoring, 2012, 14, 2438.	2.1	47
60	Interpreting the ash trend within ombrotrophic bog profiles: atmospheric dust depositions vs. mineralization processes. The Etang de la Gruère case study. Plant and Soil, 2012, 353, 1-9.	3.7	19
61	Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). Journal of Environmental Monitoring, 2011, 13, 1422.	2.1	71
62	Evaluating the †̃conservative' behavior of stable isotopic ratios (Î 13C, Î 15N, and Î 18O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence. Chemical Geology, 2011, 285, 124-132.	3.3	26
63	Studying the humification degree and evolution of peat down a Holocene bog profile (Inuvik, NW) Tj ETQq1 1 0.7	84314 rgt 1.8	3T ₃ /Overloo
64	Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 2011, 35, 799-807.	5.7	55
65	Comparative management of offshore posidonia residues: Composting vs. energy recovery. Waste Management, 2011, 31, 78-84.	7.4	49
66	Soil – farming system – food – health: Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples. Soil and Tillage Research, 2010, 107, 97-105.	5.6	65
67	Distribution patterns of selected PAHs in bulk peat and corresponding humic acids from a Swiss ombrotrophic bog profile. Plant and Soil, 2009, 315, 35-45.	3.7	30
68	Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland). Journal of Soils and Sediments, 2009, 9, 443-456.	3.0	29
69	Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH+Na4P2O7 solutions. Journal of Hazardous Materials, 2009, 167, 987-994.	12.4	17
70	Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environmental Research, 2009, 109, 413-420.	7.5	184
71	Comparison of Hg concentrations in ombrotrophic peat and corresponding humic acids, and implications for the use of bogs as archives of atmospheric Hg deposition. Geoderma, 2009, 148, 399-404.	5.1	28
72	Distribution of As, Cr, Ni, Rb, Ti and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile (NW Switzerland). Applied Geochemistry, 2008, 23, 25-33.	3.0	35

CLAUDIO ZACCONE

#	Article	IF	CITATIONS
73	Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction. Organic Geochemistry, 2008, 39, 830-838.	1.8	67
74	Humic acids role in Br accumulation along two ombrotrophic peat bog profiles. Geoderma, 2008, 146, 26-31.	5.1	24
75	Influence of extractant on quality and trace elements content of peat humic acids. Talanta, 2007, 73, 820-830.	5.5	40
76	Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry, 2007, 38, 151-160.	1.8	112
77	Enrichment and depletion of major and trace elements, and radionuclides in ombrotrophic raw peat and corresponding humic acids. Geoderma, 2007, 141, 235-246.	5.1	51
78	Highly Organic Soils as "Witnesses―of Anthropogenic Pb, Cu, Zn, and 137Cs Inputs During Centuries. Water, Air, and Soil Pollution, 2007, 186, 263-271.	2.4	28