Sujuan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9283553/publications.pdf

Version: 2024-02-01

361413 315739 1,511 43 20 38 h-index citations g-index papers 43 43 43 2265 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst. ACS Applied Materials & Diterfaces, 2017, 9, 16620-16626.	8.0	176
2	Synthesis and photocatalytic properties of BiOCl nanowire arrays. Materials Letters, 2010, 64, 115-118.	2.6	157
3	Introducing Ti ³⁺ defects based on lattice distortion for enhanced visible light photoreactivity in TiO ₂ microspheres. RSC Advances, 2017, 7, 32461-32467.	3.6	99
4	Effects of Surface Terminations of 2D Bi ₂ WO ₆ on Photocatalytic Hydrogen Evolution from Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20067-20074.	8.0	78
5	Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. CrystEngComm, 2011, 13, 4930.	2.6	69
6	Promoting the Hole Extraction with Co ₃ O ₄ Nanomaterials for Efficient Carbonâ€Based CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800315.	5.8	65
7	Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer. Advanced Functional Materials, 2020, 30, 1908613.	14.9	65
8	BiOCl nano/microstructures on substrates: Synthesis and photocatalytic properties. Materials Letters, 2011, 65, 1344-1347.	2.6	64
9	A Bi/BiOI/(BiO)2CO3 heterostructure for enhanced photocatalytic NO removal under visible light. Chinese Journal of Catalysis, 2019, 40, 362-370.	14.0	63
10	Solventâ€Assisted Lowâ€Temperature Crystallization of SnO ₂ Electronâ€Transfer Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900557.	14.9	59
11	Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Applied Catalysis B: Environmental, 2018, 221, 467-472.	20.2	58
12	Surface Reorganization Leads to Enhanced Photocatalytic Activity in Defective BiOCl. Chemistry of Materials, 2018, 30, 5128-5136.	6.7	55
13	A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy, 2019, 55, 269-276.	16.0	50
14	Controllable growth of BiOCl film with high percentage of exposed {001} facets. Applied Surface Science, 2014, 289, 266-273.	6.1	39
15	Atomic defects in ultra-thin mesoporous TiO2 enhance photocatalytic hydrogen evolution from water splitting. Applied Surface Science, 2020, 513, 145723.	6.1	37
16	High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. Electrochimica Acta, 2018, 260, 468-476.	5.2	27
17	Fabrication and photocatalytic property of ZnO nanorod arrays on Cu2O thin film. Materials Letters, 2011, 65, 2284-2286.	2.6	26
18	Enhancing the photoresponse and photocatalytic properties of TiO2 by controllably tuning defects across {101} facets. Applied Surface Science, 2018, 434, 711-716.	6.1	23

#	Article	IF	CITATIONS
19	Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. Journal of Power Sources, 2018, 396, 49-56.	7.8	23
20	Coaxial anodic oxidation under dynamic electrolyte conditions for inner surface patterning of high-aspect-ratio and slim Ti tubes. Corrosion Science, 2017, 124, 193-197.	6.6	22
21	Ion Selectivity and Stability Enhancement of SPEEK/Lignin Membrane for Vanadium Redox Flow Battery: The Degree of Sulfonation Effect. Frontiers in Chemistry, 2018, 6, 549.	3.6	21
22	Tuning the Active Sites of Atomically Thin Defective Bi ₁₂ O ₁₇ Cl ₂ via Incorporation of Subnanometer Clusters. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9216-9223.	8.0	21
23	Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation. Nanoscale, 2016, 8, 12282-12288.	5 . 6	19
24	A Mixed Antisolvent-Assisted Crystallization Strategy for Efficient All-Inorganic CsPbIBr ₂ Perovskite Solar Cells by a Low-Temperature Process. ACS Applied Energy Materials, 2022, 5, 2881-2889.	5.1	18
25	Electronic Structure and Charge-Trapping Characteristics of the Al2O3-TiAlO-SiO2 Gate Stack for Nonvolatile Memory Applications. Nanoscale Research Letters, 2017, 12, 270.	5.7	17
26	Fluorinated interfacial layers in perovskite solar cells: efficient enhancement of the fill factor. Journal of Materials Chemistry A, 2020, 8, 16527-16533.	10.3	17
27	Reversibly tuning the surface state of Ag via the assistance of photocatalysis in Ag/BiOCl. Nanotechnology, 2019, 30, 305601.	2.6	16
28	BiOCl Nanosheets with Controlled Exposed Facets and Improved Photocatalytic Activity. Catalysis Letters, 2017, 147, 2006-2012.	2.6	15
29	Evolution of Oxyhalide Crystals under Electron Beam Irradiation: An in Situ Method To Understand the Origin of Structural Instability. Inorganic Chemistry, 2018, 57, 8988-8993.	4.0	15
30	From Unipolar, WORMâ€Type to Ambipolar, Bistable Organic Electret Memory Device by Controlling Minority Lateral Transport. Advanced Electronic Materials, 2020, 6, 1901320.	5.1	15
31	Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts. Applied Surface Science, 2020, 513, 145790.	6.1	14
32	Room Temperature Fabrication of High Quality ZrO ₂ Dielectric Films for High Performance Flexible Organic Transistor Applications. IEEE Electron Device Letters, 2018, 39, 280-283.	3.9	13
33	4-Bromoaniline Passivation for Efficient and Stable All-Inorganic CsPbl ₂ Br Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5415-5423.	5.1	12
34	Conformal Filling of TiO 2 Nanotubes with Dense M \times S y Films for 3D Heterojunctions: The Anion Effect. ChemElectroChem, 2019, 6, 1177-1182.	3.4	10
35	Tuning surface sites to boost photocatalytic degradation of phenol and ciprofloxacin. Chinese Chemical Letters, 2023, 34, 107204.	9.0	8
36	Room-Temperature-Processed ZrO ₂ Interlayer toward Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3328-3336.	5.1	7

#	Article	IF	CITATIONS
37	Enhanced anomalous diffusion of sputtered atoms in nanosized pores. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 2112-2116.	2.6	6
38	The impact of thermal annealing on the morphology of sputter deposited platinum clusters into anodic aluminum oxide pores. Applied Surface Science, 2013, 266, 400-404.	6.1	6
39	Tuning the thermal expansion behavior and promoting the mechanical properties of Mg–9Al–1Zn magnesium alloys by the introduction of MnCoGe-based alloys. Scripta Materialia, 2022, 214, 114680.	5.2	4
40	Growth of Intricate <scp>ZnO</scp> Nanorod Networks on <scp>αâ€Fe₂O₃</scp> â€Coated <scp>Si</scp> Substrate: Growth Mechanism and Optical Properties. Journal of the American Ceramic Society, 2011, 94, 1992-1994.	3.8	1
41	Probing the microscopic mechanisms in photovoltaic degradation behaviors of CH3NH3PbI3 perovskite films via photoconductive atomic force microscopy. Surfaces and Interfaces, 2021, 27, 101540.	3.0	1
42	Synthesis and photocatalytic properties of Cu <inf>2</inf> O/BiOCl semiconductor films. , 2013, , .		0
43	Supper lattice structure transformation based on nonstoichiometric bismuth oxychloride. Microscopy and Microanalysis, 2017, 23, 1676-1677.	0.4	0