
Peter D Wentzell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9283345/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond principal components: a critical comparison of factor analysis methods for subspace modelling in chemistry. Analytical Methods, 2021, 13, 4188-4219.	2.7	11
2	Combinatorial projection pursuit analysis for exploring multivariate chemical data. Analytica Chimica Acta, 2021, 1174, 338716.	5.4	4
3	Simulation of 1 / f \hat{I}_{\pm} noise for analytical measurements. Journal of Chemometrics, 2020, 34, e3137.	1.3	1
4	Sparse Projection Pursuit Analysis: An Alternative for Exploring Multivariate Chemical Data. Analytical Chemistry, 2020, 92, 1755-1762.	6.5	7
5	Partial least squares discrimination applied to a few samples dataset: A case for predicting the presence of pesticide in lettuce. Journal of Chemometrics, 2020, 34, e3299.	1.3	1
6	Kurtosis-based projection pursuit analysis to extract information from sensory attributes of cachaça. Chemometrics and Intelligent Laboratory Systems, 2020, 203, 104075.	3.5	5
7	Chemical Barcoding: A Nuclear-Magnetic-Resonance-Based Approach To Ensure the Quality and Safety of Natural Ingredients. Journal of Agricultural and Food Chemistry, 2019, 67, 7765-7774.	5.2	10
8	NoiseGen - Analytical Measurement Error Simulation Software. Chemometrics and Intelligent Laboratory Systems, 2019, 189, 155-160.	3.5	1
9	Assessing individual performance and maintaining breath sample integrity in biomedical detection dogs. Behavioural Processes, 2018, 155, 8-18.	1.1	8
10	Implications of measurement error structure on the visualization of multivariate chemical data: hazards and alternatives. Canadian Journal of Chemistry, 2018, 96, 738-748.	1.1	8
11	Improved modeling of multivariate measurement errors based on the Wishart distribution. Analytica Chimica Acta, 2017, 959, 1-14.	5.4	15
12	Projection pursuit and PCA associated with near and middle infrared hyperspectral images to investigate forensic cases of fraudulent documents. Microchemical Journal, 2017, 130, 412-419.	4.5	40
13	Generalized error-dependent prediction uncertainty in multivariate calibration. Analytica Chimica Acta, 2016, 903, 51-60.	5.4	27
14	Simple methods for the optimization of complexâ€valued kurtosis as a projection index. Journal of Chemometrics, 2015, 29, 224-236.	1.3	2
15	Procrustes rotation as a diagnostic tool for projection pursuit analysis. Analytica Chimica Acta, 2015, 877, 51-63.	5.4	11
16	The Errors of My Ways: Maximum Likelihood PCA Seventeen Years after Bruce. ACS Symposium Series, 2015, , 31-64.	0.5	2
17	Regularized projection pursuit for data with a small sample-to-variable ratio. Metabolomics, 2014, 10, 589-606.	3.0	13
18	Reâ€centered kurtosis as a projection pursuit index for multivariate data analysis. Journal of Chemometrics, 2014, 28, 370-384.	1.3	19

#	Article	IF	CITATIONS
19	Characterization of heteroscedastic measurement noise in the absence of replicates. Analytica Chimica Acta, 2014, 847, 16-28.	5.4	19
20	Measurement Errors in Multivariate Chemical Data. Journal of the Brazilian Chemical Society, 2013, , .	0.6	4
21	Chromatographic behaviour of peptides following dimethylation with H2/D2-formaldehyde: Implications for comparative proteomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 908, 59-66.	2.3	21
22	Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical, 2012, 173, 157-163.	7.8	239
23	Exploratory data analysis with noisy measurements. Journal of Chemometrics, 2012, 26, 264-281.	1.3	19
24	Scanner Digital Images Combined with Color Parameters: A Case Study to Detect Adulterations in Liquid Cow's Milk. Food Analytical Methods, 2012, 5, 89-95.	2.6	50
25	Fast and simple methods for the optimization of kurtosis used as a projection pursuit index. Analytica Chimica Acta, 2011, 704, 1-15.	5.4	38
26	Interpretation of analysis of variance models using principal component analysis to assess the effect of a maternal anticancer treatment on the mineralization of rat bones. Analytica Chimica Acta, 2011, 689, 1-7.	5.4	18
27	An introduction to DNA microarrays for gene expression analysis. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 28-52.	3.5	43
28	Preliminary Exploration of Time Course DNA Microarray Data with Correlation Maps. OMICS A Journal of Integrative Biology, 2010, 14, 99-107.	2.0	4
29	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmospheric Environment, 2009, 43, 3989-3997.	4.1	125
30	Characterization of the measurement error structure in 1D 1H NMR data for metabolomics studies. Analytica Chimica Acta, 2009, 636, 163-174.	5.4	44
31	Modeling the Response of a Long-Period Fiber Grating to Ambient Refractive Index Change in Chemical Sensing Applications. Journal of Lightwave Technology, 2008, 26, 1986-1992.	4.6	28
32	Potential Bias in GO::TermFinder. Briefings in Bioinformatics, 2008, 10, 289-294.	6.5	9
33	Methods for Estimating and Mitigating Errors in Spotted, Dual-color DNA Microarrays. OMICS A Journal of Integrative Biology, 2007, 11, 186-199.	2.0	7
34	Tuning the response of long-period fiber gratings for chemical sensing applications. Proceedings of SPIE, 2007, , .	0.8	0
35	Bootstrap method for the estimation of measurement uncertainty in spotted dual-color DNA microarrays. Analytical and Bioanalytical Chemistry, 2007, 389, 2125-2141.	3.7	13
36	An automated, pressure-driven sampling device for harvesting from liquid cultures for genomic and biochemical analyses. Journal of Microbiological Methods, 2006, 65, 357-360.	1.6	4

#	Article	IF	CITATIONS
37	Approaching the direct exponential curve resolution algorithm from a maximum likelihood perspective. Analytica Chimica Acta, 2006, 556, 383-399.	5.4	10
38	Multivariate curve resolution of time course microarray data. BMC Bioinformatics, 2006, 7, 343.	2.6	101
39	On the equivalence between total least squares and maximum likelihood PCA. Analytica Chimica Acta, 2005, 544, 254-267.	5.4	51
40	Methods for systematic investigation of measurement error covariance matrices. Chemometrics and Intelligent Laboratory Systems, 2005, 77, 181-205.	3.5	69
41	Mathematical improvements to maximum likelihood parallel factor analysis: experimental studies. Journal of Chemometrics, 2005, 19, 236-252.	1.3	5
42	Mathematical improvements to maximum likelihood parallel factor analysis: theory and simulations. Journal of Chemometrics, 2005, 19, 216-235.	1.3	8
43	DNA microarrays: is there a role for analytical chemistry?. Analyst, The, 2005, 130, 1331.	3.5	8
44	Genomic Analysis of Stationary-Phase and Exit inSaccharomyces cerevisiae: Gene Expression and Identification of Novel Essential Genes. Molecular Biology of the Cell, 2004, 15, 5295-5305.	2.1	138
45	Maximum Likelihood Principal Components Regression on Wavelet-Compressed Data. Applied Spectroscopy, 2004, 58, 855-862.	2.2	10
46	Maximum likelihood parallel factor analysis (MLPARAFAC). Journal of Chemometrics, 2003, 17, 237-253.	1.3	28
47	Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemometrics and Intelligent Laboratory Systems, 2003, 65, 257-279.	3.5	165
48	Application of Maximum Likelihood Principal Components Regression to Fluorescence Emission Spectra. Applied Spectroscopy, 2002, 56, 789-796.	2.2	31
49	Dynamic Monte Carlo self-modeling curve resolution method for multicomponent mixtures. Chemometrics and Intelligent Laboratory Systems, 2002, 62, 171-188.	3.5	40
50	Three-Way Analysis of Fluorescence Spectra of Polycyclic Aromatic Hydrocarbons with Quenching by Nitromethane. Analytical Chemistry, 2001, 73, 1408-1415.	6.5	55
51	A modification to window target-testing factor analysis using a Gaussian window. Chemometrics and Intelligent Laboratory Systems, 2000, 51, 3-7.	3.5	11
52	Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration. Applied Spectroscopy, 2000, 54, 1055-1068.	2.2	124
53	Maximum likelihood principal component analysis with correlated measurement errors: theoretical and practical considerations. Chemometrics and Intelligent Laboratory Systems, 1999, 45, 65-85.	3.5	73
54	Window target-testing factor analysis: theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Analytica Chimica Acta, 1999, 389, 95-113.	5.4	34

4

#	Article	IF	CITATIONS
55	Hazards of digital smoothing filters as a preprocessing tool in multivariate calibration. Journal of Chemometrics, 1999, 13, 133-152.	1.3	38
56	Estimation of hydrocarbon types in light gas oils and diesel fuels by ultraviolet absorption spectroscopy and multivariate calibration. Canadian Journal of Chemistry, 1999, 77, 391-400.	1.1	2
57	Prediction of Simple Physical Properties of Mixed Solvent Systems by Artificial Neural Networks. Analytica Chimica Acta, 1998, 371, 117-130.	5.4	15
58	An Experiment in the Sampling of Solids for Chemical Analysis. Journal of Chemical Education, 1998, 75, 1028.	2.3	14
59	Direct optimization of self-modeling curve resolution: application to the kinetics of the permanganate - oxalic acid reaction. Canadian Journal of Chemistry, 1998, 76, 1144-1155.	1.1	31
60	Maximum Likelihood Multivariate Calibration. Analytical Chemistry, 1997, 69, 2299-2311.	6.5	100
61	Maximum likelihood principal component analysis. Journal of Chemometrics, 1997, 11, 339-366.	1.3	207
62	Applications of maximum likelihood principal component analysis: incomplete data sets and calibration transfer. Analytica Chimica Acta, 1997, 350, 341-352.	5.4	78
63	Acoustic Flame Detector for Gas Chromatography. Analytical Chemistry, 1996, 68, 2758-2765.	6.5	10
64	Comments on the relationship between principal components analysis and weighted linear regression for bivariate data sets. Chemometrics and Intelligent Laboratory Systems, 1996, 34, 231-244.	3.5	14
65	Evaluation of acoustic emission as a means for carbonate determination. Analytica Chimica Acta, 1995, 309, 283-292.	5.4	14
66	Parallel Kalman filters for peak purity analysis: extensions to non-ideal detector response. Analytica Chimica Acta, 1995, 307, 459-470.	5.4	11
67	Evolving projection analysis of multicomponent mixtures. Talanta, 1995, 42, 1361-1371.	5.5	3
68	Response surfaces for the determination of arsenic(III) by hydride generation atomic absorption spectrometry and flow injection. Analyst, The, 1994, 119, 1403.	3.5	9
69	Models for Conductance Measurements in Quality Assurance of Water Analysis. Analytical Chemistry, 1994, 66, 830-835.	6.5	9
70	Taxonomy of Amanita mushrooms by pattern recognition of amino acid chromatographic data. Analytica Chimica Acta, 1993, 277, 333-346.	5.4	11
71	Random walk simulation of flow injection analysis. Evaluation of dispersion profiles. Analytica Chimica Acta, 1993, 278, 293-306.	5.4	22
72	Limitations of evolving principal component innovation analysis for peak purity detection in chromatography. Chemometrics and Intelligent Laboratory Systems, 1993, 20, 183-195.	3.5	14

#	Article	IF	CITATIONS
73	Parallel Kalman filter networks for kinetic methods of analysis. Analytica Chimica Acta, 1992, 257, 173-181.	5.4	16
74	Continuous flow method for the determination of aromatic aldehydes. Analytica Chimica Acta, 1992, 258, 253-258.	5.4	7
75	An Analytical Perspective on ACOUSTIC EMISSION. Analytical Chemistry, 1991, 63, 497A-507A.	6.5	13
76	Real-time principal component analysis using parallel Kalman filter networks for peak purity analysis. Analytical Chemistry, 1991, 63, 2512-2519.	6.5	35
77	Toolbox for chemical acoustic emission data acquisition and analysis. Chemometrics and Intelligent Laboratory Systems, 1991, 12, 271-290.	3.5	6
78	Evaluation of acoustic emission as a means of quantitative chemical analysis. Analytica Chimica Acta, 1991, 246, 43-53.	5.4	27
79	Characterization of acoustic emission from an electrolysis cell. Analytica Chimica Acta, 1991, 254, 223-234.	5.4	13
80	Comparison of pattern recognition descriptors for chemical acoustic emission analysis. Journal of Chemometrics, 1991, 5, 389-403.	1.3	8
81	Versatile Pump Controller for Continuous Flow Methods. Instrumentation Science and Technology, 1990, 19, 167-179.	1.8	1
82	Solution robotics: The chemist's workbench. Chemometrics and Intelligent Laboratory Systems, 1990, 8, 283-288.	3.5	3
83	Automated exploration and exploitation of flow-injection response surfaces. Analytica Chimica Acta, 1990, 237, 361-379.	5.4	12
84	Programming direct memory access data acquisition. TrAC - Trends in Analytical Chemistry, 1990, 9, 3-8.	11.4	8
85	Programming control and data acquisition routines for the IEEE-488 instrumentation interface. TrAC - Trends in Analytical Chemistry, 1990, 9, 217-222.	11.4	5
86	Kinetics of the reaction between aromatic aldehydes and o-dianisidine. Analytical Chemistry, 1990, 62, 304-308.	6.5	3
87	Spectrophotometric determination of palladium with sulfochlorophenolazorhodanine by flow injection. Talanta, 1990, 37, 329-336.	5.5	11
88	Computer-controlled apparatus for automated development of continuous flow methods. Journal of Automated Methods and Management in Chemistry, 1989, 11, 227-234.	0.3	8
89	Simultaneous kinetic determinations with the kalman filter. Analytica Chimica Acta, 1989, 224, 263-274.	5.4	48
90	Display methods for dendrograms. TrAC - Trends in Analytical Chemistry, 1989, 8, 289-291.	11.4	6

#	Article	IF	CITATIONS
91	Chemical acoustic emission analysis in the frequency domain. Analytical Chemistry, 1989, 61, 2638-2642.	6.5	33
92	Chemical methods in environmental and clinical analysis. Analytical Proceedings, 1989, 26, 128.	0.4	3
93	Modeling chemical response surfaces with the Kalman filter. Analytical Chemistry, 1988, 60, 905-911.	6.5	23
94	Frequency response of initial point least squares polynomial filters. Analytical Chemistry, 1987, 59, 367-371.	6.5	12
95	Comparison of reaction-rate methods of analysis for systems following first-order kinetics. Analytical Chemistry, 1986, 58, 2855-2858.	6.5	34
96	Reaction-rate method of analysis insensitive to between-run changes in rate constant. Analytical Chemistry, 1986, 58, 2851-2855.	6.5	23