
Frederick A Kamke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9283154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viscoelastic properties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis. European Journal of Wood and Wood Products, 2021, 79, 263-271.	1.3	12
2	Alkali Concentration and Diluent Effects on Properties of Grape Cane Fiber-Reinforced Polymer Composites. Polymers, 2021, 13, 4055.	2.0	1
3	Influence of specimen size during accelerated weathering of wood-based structural panels. Wood Material Science and Engineering, 2020, 15, 17-29.	1.1	9
4	Performance of Light-Frame Timber Shear Walls Produced with Weathered Sheathing. Journal of Architectural Engineering, 2020, 26, .	0.8	7
5	Effect of chemical and thermal modification, and material replacement on strand board properties. European Journal of Wood and Wood Products, 2020, 78, 565-575.	1.3	4
6	Comparison of alkali treatments on selected chemical, physical and mechanical properties of grape cane fibers. Cellulose, 2020, 27, 7371-7387.	2.4	14
7	Moisture Transport in Wood-Based Structural Panels under Transient Hygroscopic Conditions. Forest Products Journal, 2020, 70, 283-292.	0.2	4
8	Effect of Alkali Treatment on the Tensile Properties of Grape Cane Fibers by Integrating Digital Image Correlation Method. Wood and Fiber Science, 2020, 52, 365-379.	0.2	1
9	X-ray methods to observe and quantify adhesive penetration into wood. Journal of Materials Science, 2019, 54, 705-718.	1.7	28
10	Method of Stabilizing Heavily Spalted Big Leaf Maple as a Decorative Coating Veneer Layer for Engineered Wood Flooring. Coatings, 2019, 9, 132.	1.2	3
11	Understanding the effect of weathering on adhesive bonds for wood composites using digital image correlation (DIC). Holzforschung, 2019, 73, 155-164.	0.9	13
12	Influence of Specimen Size on Accelerated Weathering of Laminated Veneer Lumber. Forest Products Journal, 2019, 69, 70-80.	0.2	0
13	A capacitive multi-wavelength sensor for moisture content gradient sensing in wood. Wood Science and Technology, 2018, 52, 717-732.	1.4	7
14	Bonding performance and mechanism of thermal-hydro-mechanical modified veneer. Wood Science and Technology, 2018, 52, 343-363.	1.4	10
15	Methodology for comparing wood adhesive bond load transfer using digital volume correlation. Wood Science and Technology, 2018, 52, 1569-1587.	1.4	13
16	Laboratory and Outdoor Weathering of Wood-Composite I-Joists. Journal of Materials in Civil Engineering, 2018, 30, 04018148.	1.3	3
17	Analysis of Adhesive Penetration into Wood using Nano-X-ray Computed Tomography. Wood and Fiber Science, 2018, 50, 66-76.	0.2	14
18	Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products, 2017, 75, 113-123.	1.3	39

Frederick A Kamke

#	Article	IF	CITATIONS
19	Bonding of densified beech wood using adhesives based on thermally modified soy proteins. European Journal of Wood and Wood Products, 2017, 75, 767-776.	1.3	8
20	Integrating optical measurement and modelling for quantitative analysis of the micromechanical load transfer in the wood-adhesive bond interphase. International Wood Products Journal, 2016, 7, 231-234.	0.6	2
21	Evaluation of a Wood-Strand Molded Core Sandwich Panel. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	12
22	Comparison of the flexural behavior of natural and thermo-hydro-mechanically densified Moso bamboo. European Journal of Wood and Wood Products, 2016, 74, 633-642.	1.3	38
23	X-ray computed tomography of wood-adhesive bondlines: attenuation and phase-contrast effects. Wood Science and Technology, 2015, 49, 1185-1208.	1.4	28
24	Resistance of resin-impregnated VTC processed hybrid-poplar to fungal attack. International Biodeterioration and Biodegradation, 2015, 99, 174-176.	1.9	6
25	Quantitative wood–adhesive penetration with X-ray computed tomography. International Journal of Adhesion and Adhesives, 2015, 61, 71-80.	1.4	35
26	Bonding of THM modified Moso bamboo (Phyllostachys pubescens Mazel) using modified soybean protein isolate (SPI) based adhesives. European Journal of Wood and Wood Products, 2015, 73, 781-792.	1.3	8
27	Potential for Using Essential Oils to Protect Viscoelastic Thermal Compression–Treated Hybrid Poplar. Forest Products Journal, 2015, 65, 93-99.	0.2	2
28	Comparison of transverse compression creep ofPseudotsuga menziesiiandPopulus sp. in high-temperature steam environments. Wood Material Science and Engineering, 2014, 9, 84-91.	1.1	1
29	The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla. Wood Science and Technology, 2014, 48, 373-392.	1.4	17
30	Simultaneous drying and densification of silver birch (Betula pendula L.) veneers: analysis of morphology, thickness swelling, and density profile. Wood Science and Technology, 2014, 48, 325-336.	1.4	14
31	Phenol formaldehyde adhesives formulated for advanced X-ray imaging in wood-composite bondlines. Journal of Materials Science, 2014, 49, 580-591.	1.7	27
32	A new quantitative method for evaluation of adhesive penetration pattern in particulate wood-based composites: elemental counting method. Wood Science and Technology, 2014, 48, 703-712.	1.4	17
33	Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi. Wood Science and Technology, 2013, 47, 977-992.	1.4	16
34	Transverse compression behavior of Douglas-fir (Pseudotsuga menziesii) in saturated steam environment. European Journal of Wood and Wood Products, 2013, 71, 443-449.	1.3	5
35	Bending performance of 3-layer beech (Fagus sylvativa L.) and Norway spruce (Picea abies (L.) Karst.) VTC composites bonded with phenol–formaldehyde adhesive and liquefied wood. European Journal of Wood and Wood Products, 2013, 71, 507-514.	1.3	7
36	Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Science and Technology, 2013, 47, 121-139.	1.4	24

Frederick A Kamke

#	Article	IF	CITATIONS
37	Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer. European Journal of Wood and Wood Products, 2013, 71, 173-181.	1.3	8
38	The wettability and bonding performance of densified VTC beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) bonded with phenol–formaldehyde adhesive and liquefied wood. European Journal of Wood and Wood Products, 2013, 71, 371-379.	1.3	8
39	Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Science and Technology, 2012, 46, 953-964.	1.4	62
40	Compression of wood under saturated steam, superheated steam, and transient conditions at 150°C, 160°C, and 170°C. Wood Science and Technology, 2012, 46, 73-88.	1.4	50
41	Influence of stress level on compression deformation of wood in 170°C transient steam conditions. Wood Material Science and Engineering, 2011, 6, 105-111.	1.1	5
42	Data driven surrogate-based optimization in the problem solving environment WBCSim. Engineering With Computers, 2011, 27, 211-223.	3.5	4
43	Potential error in density profile measurements for wood composites. European Journal of Wood and Wood Products, 2011, 69, 167-169.	1.3	3
44	Fungal decay of viscoelastic thermal compressed (VTC) wood. European Journal of Wood and Wood Products, 2011, 69, 325-328.	1.3	13
45	Apparatus for viscoelastic thermal compression of wood. European Journal of Wood and Wood Products, 2011, 69, 483-487.	1.3	22
46	Comparative analysis of a wood: adhesive bondline. Wood Science and Technology, 2011, 45, 147-158.	1.4	50
47	Properties of parallel strand lumber from Calcutta bamboo (Dendrocalamus strictus). Wood Science and Technology, 2011, 45, 63-72.	1.4	43
48	Density profile relation to hardness of viscoelastic thermal compressed (VTC) wood composite. Wood Science and Technology, 2011, 45, 693-705.	1.4	39
49	Computational steering in the problem solving environment WBCSim. Engineering Computations, 2011, 28, 888-911.	0.7	1
50	Commercialization Potential of Viscoelastic Thermal Compressed Wood: Insights from the US Forest Products Industry. Forest Products Journal, 2011, 61, 500-509.	0.2	2
51	Phenol–formaldehyde impregnation of densified wood for improved dimensional stability. Wood Science and Technology, 2010, 44, 95-104.	1.4	100
52	Density profile and morphology of viscoelastic thermal compressed wood. Wood Science and Technology, 2009, 43, 57-68.	1.4	122
53	Unification of problem solving environment implementation layers with XML-based specifications. Advances in Engineering Software, 2008, 39, 189-201.	1.8	4
54	The mechanical properties of densified VTC wood relevant for structural composites. European Journal of Wood and Wood Products, 2008, 66, 439-446.	1.3	72

FREDERICK A KAMKE

#	Article	IF	CITATIONS
55	The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329, 82-86.	2.3	31
56	Simulation of the Hot-pressing of a Multi-layered Wood Strand Composite. Journal of Composite Materials, 2007, 41, 879-904.	1.2	3
57	Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. International Journal of Adhesion and Adhesives, 2007, 27, 562-567.	1.4	55
58	DENSIFIED RADIATA PINE FOR STRUCTURAL COMPOSITES. Maderas: Ciencia Y Tecnologia, 2006, 8, 83.	0.7	46
59	WBCSim: an environment for modeling wood-based composites manufacture. Engineering With Computers, 2006, 21, 259-271.	3.5	9
60	Properties of compression-densified wood, Part II: surface energy. Journal of Adhesion Science and Technology, 2006, 20, 335-344.	1.4	28
61	Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties. Wood Science and Technology, 2005, 39, 448-459.	1.4	101
62	Properties of compression densified wood. Part I: bond performance. Journal of Adhesion Science and Technology, 2005, 19, 1249-1261.	1.4	15
63	An experiment management component for the WBCSim problem solving environment. Advances in Engineering Software, 2004, 35, 115-123.	1.8	8
64	Analysis of Calcutta bamboo for structural composite materials: surface characteristics. Wood Science and Technology, 2003, 37, 233-240.	1.4	24
65	WBCSim: A Prototype Problem Solving Environment for Wood-Based Composites Simulations. Engineering With Computers, 1999, 15, 198-210.	3.5	19
66	Quantitative Analysis of Gross Adhesive Penetration in Wood Using Fluorescence Microscopy. Journal of Adhesion, 1992, 40, 47-61.	1.8	69
67	Cluster theory for water sorption in wood. Wood Science and Technology, 1992, 26, 83.	1.4	69
68	Fundamentals of flakeboard manufacture: wood-moisture relationships. Wood Science and Technology, 1991, 25, 57.	1.4	12
69	SMALL SPECIMEN COMPRESSION TESTING IN A PRESSURIZED STEAM ENVIRONMENT. Experimental Techniques, 1990, 14, 17-19.	0.9	1
70	Transient Moisture Effects in Fibers and Composite Materials. Journal of Composite Materials, 1990, 24, 994-1009.	1.2	32
71	Computer simulation of a rotary dryer. Part I: Retention time. AICHE Journal, 1986, 32, 263-268.	1.8	51
72	Computer simulation of a rotary dryer. Part II: Heat and Mass Transfer. AICHE Journal, 1986, 32, 269-275.	1.8	40