
Stewart N Loh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9282473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering a Fluorescent Protein Color Switch Using Entropy-Driven Î ² -Strand Exchange. ACS Sensors, 2022, 7, 263-271.	4.0	10
2	Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia. IScience, 2022, 25, 104170.	1.9	17
3	Intrinsically Disordered N-terminal Domain (NTD) of p53 Interacts with Mitochondrial PTP Regulator Cyclophilin D. Journal of Molecular Biology, 2022, 434, 167552.	2.0	11
4	p53 and Zinc: A Malleable Relationship. Frontiers in Molecular Biosciences, 2022, 9, 895887.	1.6	12
5	Engineering protein activity into off-the-shelf DNA devices. Cell Reports Methods, 2022, 2, 100202.	1.4	6
6	Benzothiazolyl and Benzoxazolyl Hydrazones Function as Zinc Metallochaperones to Reactivate Mutant p53. Journal of Medicinal Chemistry, 2021, 64, 2024-2045.	2.9	19
7	EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nature Communications, 2021, 12, 986.	5.8	77
8	Arsenic and an Old Place: Rescuing p53 Mutants in Cancer. Cancer Cell, 2021, 39, 140-142.	7.7	6
9	Engineering A Modular Protein Color Switch using An Entropyâ€driven Beta Strand Exchange. FASEB Journal, 2021, 35, .	0.2	1
10	The Next Frontier for Designing Switchable Proteins: Rational Enhancement of Kinetics. Journal of Physical Chemistry B, 2021, 125, 9069-9077.	1.2	3
11	The tumor suppressor folliculin inhibits lactate dehydrogenase A and regulates the Warburg effect. Nature Structural and Molecular Biology, 2021, 28, 662-670.	3.6	19
12	Loss of bound zinc facilitates amyloid fibril formation of leukocyte-cell-derived chemotaxin 2 (LECT2). Journal of Biological Chemistry, 2021, 296, 100446.	1.6	15
13	Urea Denaturation, Zinc Binding, and DNA Binding Assays of Mutant p53 DNA-binding Domains and Full-length Proteins. Bio-protocol, 2021, 11, e4188.	0.2	1
14	Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules, 2020, 10, 303.	1.8	25
15	Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. ELife, 2020, 9, .	2.8	42
16	A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods. Biophysical Journal, 2019, 117, 56-65.	0.2	7
17	Combinatorial Therapy of Zinc Metallochaperones with Mutant p53 Reactivation and Diminished Copper Binding. Molecular Cancer Therapeutics, 2019, 18, 1355-1365.	1.9	19
18	Large enhancement of response times of a protein conformational switch by computational design. Nature Communications, 2018, 9, 1013.	5.8	31

Stewart N Loh

#	Article	IF	CITATIONS
19	Zinc Metallochaperones Reactivate Mutant p53 Using an ON/OFF Switch Mechanism: A New Paradigm in Cancer Therapeutics. Clinical Cancer Research, 2018, 24, 4505-4517.	3.2	31
20	Construction of Allosteric Protein Switches by Alternate Frame Folding and Intermolecular Fragment Exchange. Methods in Molecular Biology, 2017, 1596, 27-41.	0.4	8
21	Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly. Scientific Reports, 2017, 7, 44388.	1.6	24
22	Quantification of Membrane Protein-Detergent Complex Interactions. Journal of Physical Chemistry B, 2017, 121, 10228-10241.	1.2	20
23	Tumor suppressor Tsc1 is a new Hsp90 coâ€chaperone that facilitates folding of kinase and nonâ€kinase clients. EMBO Journal, 2017, 36, 3650-3665.	3.5	64
24	Interrogating Detergent Desolvation of Nanopore-Forming Proteins by Fluorescence Polarization Spectroscopy. Analytical Chemistry, 2017, 89, 8013-8020.	3.2	13
25	The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nature Communications, 2016, 7, 12037.	5.8	56
26	Synthetic Metallochaperone ZMC1 Rescues Mutant p53 Conformation by Transporting Zinc into Cells as an Ionophore. Molecular Pharmacology, 2015, 87, 825-831.	1.0	66
27	Engineered Domain Swapping as an On/Off Switch for Protein Function. Chemistry and Biology, 2015, 22, 1384-1393.	6.2	28
28	Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Drug Discovery Today, 2015, 20, 1391-1397.	3.2	74
29	Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget, 2014, 5, 8879-8892.	0.8	90
30	Converting a Binding Protein into a Biosensing Conformational Switch Using Protein Fragment Exchange. Biochemistry, 2014, 53, 5505-5514.	1.2	21
31	Stepwise Conversion of a Binding Protein to a Fluorescent Switch: Application to Thermoanaerobacter tengcongensis Ribose Binding Protein. Biochemistry, 2013, 52, 600-612.	1.2	19
32	Engineering Domain-Swapped Binding Interfaces by Mutually Exclusive Folding. Journal of Molecular Biology, 2012, 416, 495-502.	2.0	22
33	Protein Conformational Switches: From Nature to Design. Chemistry - A European Journal, 2012, 18, 7984-7999.	1.7	120
34	Structural Characterization of Two Alternate Conformations in a Calbindin D _{9k} -Based Molecular Switch. Biochemistry, 2011, 50, 5583-5589.	1.2	9
35	Converting a protein into a switch for biosensing and functional regulation. Protein Science, 2011, 20, 19-29.	3.1	44
36	Probing local structural fluctuations in myoglobin by sizeâ€dependent thiolâ€disulfide exchange. Protein Science, 2010, 19, 1587-1594.	3.1	5

Stewart N Loh

#	Article	IF	CITATIONS
37	On the mechanism of protein foldâ€switching by a molecular sensor. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3260-3269.	1.5	20
38	Engineering an artificial zymogen by alternate frame protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2824-2829.	3.3	34
39	The missing Zinc: p53 misfolding and cancer. Metallomics, 2010, 2, 442.	1.0	111
40	Folding of Tetrameric p53: Oligomerization and Tumorigenic Mutations Induce Misfolding and Loss of Function. Journal of Molecular Biology, 2010, 395, 705-716.	2.0	37
41	Structural and Thermodynamic Analysis of a Conformationally Strained Circular Permutant of Barnase. Biochemistry, 2009, 48, 3497-3507.	1.2	32
42	Effect of Interdomain Linker Length on an Antagonistic Folding–Unfolding Equilibrium between Two Protein Domains. Journal of Molecular Biology, 2009, 386, 854-868.	2.0	42
43	A Ca ²⁺ -Sensing Molecular Switch Based on Alternate Frame Protein Folding. ACS Chemical Biology, 2008, 3, 723-732.	1.6	51
44	Disrupting Proteins To Treat Cancer. ACS Chemical Biology, 2008, 3, 140-141.	1.6	2
45	Dynamics of equilibrium structural fluctuations of apomyoglobin measured by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10459-10464.	3.3	73
46	Thermodynamic Analysis of an Antagonistic Folding–Unfolding Equilibrium Between Two Protein Domains. Journal of Molecular Biology, 2007, 371, 308-316.	2.0	28
47	Zn2+-Dependent Misfolding of the p53 DNA Binding Domain. Biochemistry, 2007, 46, 2630-2639.	1.2	48
48	Modular Enzyme Design: Regulation by Mutually Exclusive Protein Folding. Journal of Molecular Biology, 2006, 357, 1058-1062.	2.0	35
49	Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature. Protein Science, 2006, 15, 2457-2465.	3.1	31
50	Kinetic Partitioning During Folding of the p53 DNA Binding Domain. Journal of Molecular Biology, 2005, 350, 906-918.	2.0	41
51	Structure, Function, and Aggregation of the Zinc-Free Form of the p53 DNA Binding Domain. Biochemistry, 2003, 42, 2396-2403.	1.2	159
52	Allosteric Switching by Mutually Exclusive Folding of Protein Domains. Journal of Molecular Biology, 2003, 332, 529-536.	2.0	80
53	On the nature of conformational openings: native and unfolded-state hydrogen and thiol-disulfide exchange studies of ferric aquomyoglobin. Journal of Molecular Biology, 2001, 314, 153-166.	2.0	22
54	ldentifying the Site of Initial Tertiary Structure Disruption during Apomyoglobin Unfolding. Biochemistry, 1999, 38, 14433-14439.	1.2	21

#	Article	IF	CITATIONS
55	Changes in side chain packing during apomyoglobin folding characterized by pulsed thiol-disulfide exchange. Nature Structural and Molecular Biology, 1998, 5, 730-737.	3.6	43
56	Solvent effects on the energetics of prolyl peptide bond isomerization. Journal of the American Chemical Society, 1992, 114, 5437-5439.	6.6	109