Azza B El-Remessy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9281631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetes-induced Coronary Vascular Dysfunction Involves Increased Arginase Activity. Circulation Research, 2008, 102, 95-102.	4.5	327
2	Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes/Metabolism Research and Reviews, 2003, 19, 442-455.	4.0	253
3	Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes. American Journal of Pathology, 2006, 168, 235-244.	3.8	235
4	Vascular Endothelial Growth Factor and Diabetic Retinopathy: Role of Oxidative Stress. Current Drug Targets, 2005, 6, 511-524.	2.1	212
5	Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. British Journal of Pharmacology, 2013, 170, 712-729.	5.4	202
6	Neuroprotective Effect of(â^')Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity. American Journal of Pathology, 2003, 163, 1997-2008.	3.8	197
7	Experimental Diabetes Causes Breakdown of the Blood-Retina Barrier by a Mechanism Involving Tyrosine Nitration and Increases in Expression of Vascular Endothelial Growth Factor and Urokinase Plasminogen Activator Receptor. American Journal of Pathology, 2003, 162, 1995-2004.	3.8	187
8	Role of NADPH Oxidase in Retinal Vascular Inflammation. , 2008, 49, 3239.		184
9	Inhibition of NAD(P)H Oxidase Activity Blocks Vascular Endothelial Growth Factor Overexpression and Neovascularization during Ischemic Retinopathy. American Journal of Pathology, 2005, 167, 599-607.	3.8	177
10	Retinal Microglial Activation and Inflammation Induced by Amadori-Glycated Albumin in a Rat Model of Diabetes. Diabetes, 2011, 60, 1122-1133.	0.6	162
11	Role of NADPH Oxidase and Stat3 in Statin-Mediated Protection against Diabetic Retinopathy. , 2008, 49, 3231.		152
12	Peroxynitrite Mediates Retinal Neurodegeneration by Inhibiting Nerve Growth Factor Survival Signaling in Experimental and Human Diabetes. Diabetes, 2008, 57, 889-898.	0.6	148
13	Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. Journal of Cell Science, 2005, 118, 243-252.	2.0	136
14	High Glucose-Induced Tyrosine Nitration in Endothelial Cells: Role of eNOS Uncoupling and Aldose Reductase Activation. , 2003, 44, 3135.		135
15	Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia, 2014, 57, 413-423.	6.3	125
16	Adaptive Cerebral Neovascularization in a Model of Type 2 Diabetes. Diabetes, 2010, 59, 228-235.	0.6	113
17	Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia, 2011, 54, 657-668.	6.3	111
18	Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. American Journal of Physiology - Cell Physiology, 2003, 285, C546-C554.	4.6	104

#	Article	IF	CITATIONS
19	Minocycline and Tissue-Type Plasminogen Activator for Stroke. Stroke, 2009, 40, 3028-3033.	2.0	100
20	Thioredoxin-Interacting Protein: a Novel Target for Neuroprotection in Experimental Thromboembolic Stroke in Mice. Molecular Neurobiology, 2015, 51, 766-778.	4.0	92
21	Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. British Journal of Pharmacology, 2011, 164, 170-180.	5.4	91
22	Enhanced Cerebral but Not Peripheral Angiogenesis in the Goto-Kakizaki Model of Type 2 Diabetes Involves VEGF and Peroxynitrite Signaling. Diabetes, 2012, 61, 1533-1542.	0.6	91
23	Peroxynitrite mediates VEGF's angiogenic signal and function via a nitrationâ€independent mechanism in endothelial cells. FASEB Journal, 2007, 21, 2528-2539.	0.5	74
24	Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation. Experimental Diabetes Research, 2010, 2010, 1-9.	3.8	69
25	Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor proNGF expression in a rat model of diabetes. Diabetologia, 2011, 54, 669-680.	6.3	67
26	Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia, 2011, 54, 1567-1578.	6.3	66
27	Role of Inflammasome Activation in the Pathophysiology of Vascular Diseases of the Neurovascular Unit. Antioxidants and Redox Signaling, 2015, 22, 1188-1206.	5.4	66
28	Early Intervention of Tyrosine Nitration Prevents Vaso-Obliteration and Neovascularization in Ischemic Retinopathy. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 125-134.	2.5	65
29	MicroRNA-146b-3p Regulates Retinal Inflammation by Suppressing Adenosine Deaminase-2 in Diabetes. BioMed Research International, 2015, 2015, 1-8.	1.9	65
30	Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R274-R282.	1.8	64
31	Alteration of growth factors and neuronal death in diabetic retinopathy: what we have learned so far. Molecular Vision, 2011, 17, 300-8.	1.1	63
32	Molecular mechanisms of diabetic retinopathy: Potential therapeutic targets. Middle East African Journal of Ophthalmology, 2015, 22, 135.	0.3	62
33	Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 2005, 39, 1353-1361.	2.9	61
34	Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. International Journal of Molecular Medicine, 2008, 21, 667-76.	4.0	61
35	Poly(ADP-Ribose)Polymerase Inhibition Counteracts Cataract Formation and Early Retinal Changes in Streptozotocin-Diabetic Rats. , 2009, 50, 1778.		60
36	Simvastatin Improves Diabetes-Induced Coronary Endothelial Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 386-395.	2.5	59

#	Article	IF	CITATIONS
37	Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence. Clinical Science, 2011, 120, 307-319.	4.3	58
38	S-Glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration. Journal of Cell Science, 2012, 125, 4751-60.	2.0	57
39	Candesartan Augments Ischemia-Induced Proangiogenic State and Results in Sustained Improvement After Stroke. Stroke, 2009, 40, 1870-1876.	2.0	54
40	Roles of Superoxide, Peroxynitrite, and Protein Kinase C in the Development of Tolerance to Nitroglycerin. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 289-299.	2.5	53
41	Diverse Effects of Statins on Angiogenesis: New Therapeutic Avenues. Pharmacotherapy, 2010, 30, 169-176.	2.6	53
42	Modulation of p75NTR prevents diabetes- and proNGF-induced retinal inflammation and blood–retina barrier breakdown in mice and rats. Diabetologia, 2013, 56, 2329-2339.	6.3	51
43	HMG-CoA Reductase Inhibitors (Statin) Prevents Retinal Neovascularization in a Model of Oxygen-Induced Retinopathy. , 2009, 50, 4934.		49
44	Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Review of Ophthalmology, 2014, 9, 99-107.	0.6	48
45	Diabetic Retinopathy: Current Management and Experimental Therapeutic Targets. Pharmacotherapy, 2009, 29, 182-192.	2.6	47
46	Deletion of thioredoxinâ€interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury. British Journal of Pharmacology, 2014, 171, 1299-1313.	5.4	46
47	Imbalance of the Nerve Growth Factor and Its Precursor as a Potential Biomarker for Diabetic Retinopathy. BioMed Research International, 2015, 2015, 1-12.	1.9	46
48	Early Atorvastatin Reduces Hemorrhage after Acute Cerebral Ischemia in Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 532-540.	2.5	44
49	Thioredoxin-Interacting Protein Expression Is Required for VEGF-Mediated Angiogenic Signal in Endothelial Cells. Antioxidants and Redox Signaling, 2013, 19, 2199-2212.	5.4	43
50	Obesity, metabolic syndrome and diabetic retinopathy: Beyond hyperglycemia. World Journal of Diabetes, 2017, 8, 317.	3.5	42
51	Vascular Protection by Angiotensin Receptor Antagonism Involves Differential VEGF Expression in Both Hemispheres after Experimental Stroke. PLoS ONE, 2011, 6, e24551.	2.5	42
52	Neurovascular Protective Effect of FeTPPs in N-Methyl-D-Aspartate Model. American Journal of Pathology, 2010, 177, 1187-1197.	3.8	41
53	Renin–angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clinical Science, 2016, 130, 221-238.	4.3	38
54	Diabetes and Overexpression of proNGF Cause Retinal Neurodegeneration via Activation of RhoA Pathway. PLoS ONE, 2013, 8, e54692.	2.5	37

4

#	Article	IF	CITATIONS
55	Alterations of Retinal Vasculature in Cystathionine-Beta-Synthase Mutant Mice, a Model of Hyperhomocysteinemia. , 2013, 54, 939.		35
56	Silencing p75NTR prevents proNGF-induced endothelial cell death and development of acellular capillaries in rat retina. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15013.	4.1	34
57	High fat diet dysregulates microRNA-17-5p and triggers retinal inflammation: Role of endoplasmic-reticulum-stress. World Journal of Diabetes, 2017, 8, 56.	3.5	31
58	Acute Treatment with Candesartan Reduces Early Injury After Permanent Middle Cerebral Artery Occlusion. Translational Stroke Research, 2011, 2, 179-185.	4.2	30
59	Potential roles of adenosine deaminase-2 in diabetic retinopathy. Biochemical and Biophysical Research Communications, 2013, 436, 355-361.	2.1	28
60	Candesartan Induces a Prolonged Proangiogenic Effect and Augments Endothelium-Mediated Neuroprotection after Oxygen and Glucose Deprivation: Role of Vascular Endothelial Growth Factors A and B. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 444-457.	2.5	27
61	Deletion of TXNIP Mitigates High-Fat Diet-Impaired Angiogenesis and Prevents Inflammation in a Mouse Model of Critical Limb Ischemia. Antioxidants, 2017, 6, 47.	5.1	26
62	Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway. PLoS ONE, 2013, 8, e71868.	2.5	25
63	Modulation of the p75 neurotrophin receptor using LM11A-31 prevents diabetes-induced retinal vascular permeability in mice via inhibition of inflammation and the RhoA kinase pathway. Diabetologia, 2019, 62, 1488-1500.	6.3	24
64	Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. Journal of Clinical & Experimental Ophthalmology, 2015, 06, .	0.1	23
65	Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat. Nutrition and Metabolism, 2009, 6, 51.	3.0	22
66	Deletion of Thioredoxin-interacting protein ameliorates high fat diet-induced non-alcoholic steatohepatitis through modulation of Toll-like receptor 2-NLRP3-inflammasome axis: Histological and immunohistochemical study. Acta Histochemica, 2018, 120, 242-254.	1.8	21
67	Diabetes exacerbates retinal oxidative stress, inflammation, and microvascular degeneration in spontaneously hypertensive rats. Molecular Vision, 2012, 18, 1457-66.	1.1	21
68	Peroxynitrite Mediates Testosterone-Induced Vasodilation of Microvascular Resistance Vessels. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 7-14.	2.5	20
69	Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. International Journal of Molecular Medicine, 2008, , .	4.0	19
70	Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1). Angiogenesis, 2015, 18, 137-150.	7.2	18
71	Electroporation-mediated gene delivery of cleavage-resistant pro-nerve growth factor causes retinal neuro- and vascular degeneration. Molecular Vision, 2012, 18, 2993-3003.	1.1	18
72	Pronerve Growth Factor Induces Angiogenesis via Activation of TrkA: Possible Role in Proliferative Diabetic Retinopathy. Journal of Diabetes Research, 2013, 2013, 1-10.	2.3	17

#	Article	IF	CITATIONS
73	Implication of the neurotrophin receptor p75 ^{NTR} in vascular diseases: beyond the eye. Expert Review of Ophthalmology, 2017, 12, 149-158.	0.6	16
74	Thioredoxin interacting protein regulates age-associated neuroinflammation. Neurobiology of Disease, 2021, 156, 105399.	4.4	15
75	Deletion of Thioredoxin Interacting Protein (TXNIP) Augments Hyperoxia-Induced Vaso-Obliteration in a Mouse Model of Oxygen Induced-Retinopathy. PLoS ONE, 2014, 9, e110388.	2.5	14
76	Na+/H+-exchanger-1 inhibition counteracts diabetic cataract formation and retinal oxidative-nitrative stress and apoptosis. International Journal of Molecular Medicine, 2012, 29, 989-98.	4.0	13
77	Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. International Journal of Molecular Sciences, 2022, 23, 249.	4.1	13
78	Modulating Expression of Thioredoxin Interacting Protein (TXNIP) Prevents Secondary Damage and Preserves Visual Function in a Mouse Model of Ischemia/Reperfusion. International Journal of Molecular Sciences, 2019, 20, 3969.	4.1	12
79	Deletion of p75NTR prevents vaso-obliteration and retinal neovascularization via activation of Trk- A receptor in ischemic retinopathy model. Scientific Reports, 2018, 8, 12490.	3.3	11
80	Nox4 contributes to the hypoxia-mediated regulation of actin cytoskeleton in cerebrovascular smooth muscle. Life Sciences, 2016, 163, 46-54.	4.3	10
81	Inducible overexpression of endothelial proNGF as a mouse model to study microvascular dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 746-757.	3.8	10
82	Evaluation of the aldose reductase inhibitor fidarestat on ischemia-reperfusion injury in rat retina. International Journal of Molecular Medicine, 2010, 26, 135-42.	4.0	9
83	Statins for prevention of diabetic-related blindness: a new treatment option?. Expert Review of Ophthalmology, 2011, 6, 269-272.	0.6	9
84	High Glucose-Mediated Tyrosine Nitration of PI3-Kinase: A Molecular Switch of Survival and Apoptosis in Endothelial Cells. Antioxidants, 2018, 7, 47.	5.1	9
85	Deletion of Thioredoxin-Interacting Protein (TXNIP) Abrogates High Fat Diet-Induced Retinal Leukostasis, Barrier Dysfunction and Microvascular Degeneration in a Mouse Obesity Model. International Journal of Molecular Sciences, 2020, 21, 3983.	4.1	9
86	Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World Journal of Diabetes, 2021, 12, 1979-1999.	3.5	9
87	Modulation of p75NTR on Mesenchymal Stem Cells Increases Their Vascular Protection in Retinal Ischemia-Reperfusion Mouse Model. International Journal of Molecular Sciences, 2021, 22, 829.	4.1	7
88	Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. Journal of Cell Science, 2016, 129, 3203-3203.	2.0	5
89	Vascular protective effects of Angiotensin Receptor Blockers: Beyond Blood pressure. Receptors & Clinical Investigation, 2015, 2, .	0.9	5
90	Systemic Effects of Ophthalmic Cyclopentolate on Body Weight in Neonatal Mice. Neonatology, 2014, 106, 37-41.	2.0	4

#	Article	IF	CITATIONS
91	Role of Matrix Metalloproteinase Activity in the Neurovascular Protective Effects of Angiotensin Antagonism. Stroke Research and Treatment, 2014, 2014, 1-9.	0.8	4
92	Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist, 2023, 29, 694-714.	3.5	4
93	Oxidative Stress in Diabetic Retinopathy. , 2008, , 217-242.		2
94	Simvastatin Improves Diabetesâ€Induced Coronary Endothelial Dysfunction Through Superoxide Reduction. FASEB Journal, 2006, 20, A1110.	0.5	0
95	Na + /H + â€exchangerâ€1 inhibition delays diabetic cataract formation and prevents retinal apoptosis and oxidative stress. FASEB Journal, 2012, 26, 686.19.	0.5	0