
Heiko Wurdak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9281294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-Î ² promotes microtube formation in glioblastoma through thrombospondin 1. Neuro-Oncology, 2022, 24, 541-553.	1.2	38
2	Polyelectrolyte complex templated synthesis of monodisperse, sub-100Ânm porous silica nanoparticles for cancer targeted and stimuli-responsive drug delivery. Journal of Colloid and Interface Science, 2021, 584, 669-683.	9.4	11
3	Cryo-EM structure of human mitochondrial HSPD1. IScience, 2021, 24, 102022.	4.1	16
4	Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model. , 2021, 9, e001143.		7
5	Self-assembly of an anion receptor with metal-dependent kinase inhibition and potent in vitro anti-cancer properties. Nature Communications, 2021, 12, 3898.	12.8	11
6	Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting. Journal of Experimental and Clinical Cancer Research, 2021, 40, 248.	8.6	18
7	Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma. Clinical and Experimental Immunology, 2020, 200, 33-44.	2.6	51
8	Histone deacetylase inhibitors induce medulloblastoma cell death independent of HDACs recruited in REST repression complexes. Molecular Genetics & Genomic Medicine, 2020, 8, e1429.	1.2	3
9	Profiling cytotoxic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300. Oncogene, 2020, 39, 5292-5306.	5.9	5
10	Chemically-induced neurite-like outgrowth reveals multicellular network function in patient-derived glioblastoma cells. Journal of Cell Science, 2019, 132, .	2.0	6
11	A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6435-6440.	7.1	23
12	shRNAâ€mediated PPARα knockdown in human glioma stem cells reduces <i>in vitro</i> proliferation and inhibits orthotopic xenograft tumour growth. Journal of Pathology, 2019, 247, 422-434.	4.5	13
13	Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Science Translational Medicine, 2018, 10, .	12.4	288
14	Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion. SLAS Discovery, 2018, 23, 862-868.	2.7	73
15	Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. Journal of Controlled Release, 2018, 281, 29-41.	9.9	99
16	KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Science Translational Medicine, 2018, 10, .	12.4	54
17	RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports, 2017, 8, 125-139.	4.8	100
18	Induced Differentiation of Brain Tumour Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 149-158.	0.1	0

Heiko Wurdak

#	Article	IF	CITATIONS
19	Prognostic microRNAs in high-grade glioma reveal a link to oligodendrocyte precursor differentiation. Oncoscience, 2014, 2, 252-262.	2.2	12
20	Regulating the ARNT/TACC3 Axis: Multiple Approaches to Manipulating Protein/Protein Interactions with Small Molecules. ACS Chemical Biology, 2013, 8, 626-635.	3.4	37
21	Exploring the cancer stem cell phenotype with high-throughput screening applications. Future Medicinal Chemistry, 2012, 4, 1229-1241.	2.3	9
22	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	13.8	124
23	Directed embryonic stem cell differentiation with small molecules. Future Medicinal Chemistry, 2010, 2, 965-973.	2.3	15
24	A small molecule accelerates neuronal differentiation in the adult rat. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16542-16547.	7.1	109
25	An RNAi Screen Identifies TRRAP as a Regulator of Brain Tumor-Initiating Cell Differentiation. Cell Stem Cell, 2010, 6, 37-47.	11.1	119
26	A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17025-17030.	7.1	90
27	TAF15 and the leukemia-associated fusion protein TAF15–CIZ/NMP4 are cleaved by caspases-3 and -7. Biochemical and Biophysical Research Communications, 2009, 384, 495-500.	2.1	4
28	A Small Molecule Primes Embryonic Stem Cells for Differentiation. Cell Stem Cell, 2009, 4, 416-426.	11.1	167
29	Brain Area-Specific Effect of TGF-β Signaling on Wnt-Dependent Neural Stem Cell Expansion. Cell Stem Cell, 2008, 2, 472-483.	11.1	123
30	Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Developmental Biology, 2007, 304, 394-408.	2.0	97
31	DiGeorge syndrome and pharyngeal apparatus development. BioEssays, 2006, 28, 1078-1086.	2.5	47
32	Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. Journal of Biology, 2005, 4, 11.	2.7	110
33	Inactivation of TGFÎ ² signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes and Development, 2005, 19, 530-535.	5.9	134
34	Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. Journal of Cell Biology, 2005, 169, 309-320.	5.2	176
35	Metastatic site-specific polarization of macrophages in intracranial breast cancer metastases. Oncotarget, 0, 7, 41473-41487.	1.8	34