Alexandre Caron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/928100/publications.pdf

Version: 2024-02-01

35 papers

1,936 citations

304368 22 h-index 377514 34 g-index

40 all docs

40 docs citations

40 times ranked

3765 citing authors

#	Article	IF	CITATIONS
1	New Horizons: Is Obesity a Disorder of Neurotransmission?. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4872-e4886.	1.8	4
2	CB1Rs in VMH neurons regulate glucose homeostasis but not body weight. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E146-E155.	1.8	9
3	Pathophysiological Mechanisms That Alter the Autonomic Brain-Liver Communication in Metabolic Diseases. Endocrinology, 2021, 162, .	1.4	6
4	Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Molecular Metabolism, 2020, 35, 100956.	3.0	7
5	Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Molecular Metabolism, 2019, 27, 11-21.	3.0	25
6	The Hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis. Molecular Metabolism, 2019, 30, 184-191.	3.0	19
7	Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metabolism, 2019, 30, 706-719.e6.	7.2	179
8	Identification of Leptin Receptor–Expressing Cells in the Nodose Ganglion of Male Mice. Endocrinology, 2019, 160, 1307-1322.	1.4	4
9	The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight, 2019, 4, .	2.3	39
10	Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure. Diabetes, 2018, 67, 1285-1296.	0.3	25
11	Leptin and brain–adipose crosstalks. Nature Reviews Neuroscience, 2018, 19, 153-165.	4.9	182
12	Desacetyl- \hat{l} ±-melanocyte stimulating hormone and \hat{l} ±-melanocyte stimulating hormone are required to regulate energy balance. Molecular Metabolism, 2018, 9, 207-216.	3.0	22
13	PPAR \hat{I}^3 is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism: Clinical and Experimental, 2018, 89, 27-38.	1.5	27
14	DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiological Reviews, 2018, 98, 1765-1803.	13.1	64
15	Leptin Receptor Expression in Mouse Intracranial Perivascular Cells. Frontiers in Neuroanatomy, 2018, 12, 4.	0.9	25
16	POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. ELife, 2018, 7, .	2.8	77
17	Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E815-E824.	1.8	17
18	Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue. Biochimie, 2017, 134, 118-126.	1.3	34

#	Article	IF	CITATIONS
19	Amplification of Adipogenic Commitment by VSTM2A. Cell Reports, 2017, 18, 93-106.	2.9	18
20	Loss of hepatic DEPTOR alters the metabolic transition to fasting. Molecular Metabolism, 2017, 6, 447-458.	3.0	32
21	Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Annals of the New York Academy of Sciences, 2017, 1391, 35-53.	1.8	53
22	Energy Homeostasis: Paraventricular NucleusÂSystemâ~†., 2017,,.		3
23	Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism, 2016, 5, 102-112.	3.0	33
24	mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Scientific Reports, 2016, 6, 37223.	1.6	64
25	Metabolic activity of brown, "beige,―and white adipose tissues in response to chronic adrenergic stimulation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E260-E268.	1.8	92
26	DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1322-R1331.	0.9	13
27	Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. ELife, 2016, 5, .	2.8	25
28	Hypothalamic control of brown adipose tissue thermogenesis. Frontiers in Systems Neuroscience, 2015, 9, 150.	1.2	80
29	<i>In vivo</i> measurement of energy substrate contribution to coldâ€induced brown adipose tissue thermogenesis. FASEB Journal, 2015, 29, 2046-2058.	0.2	183
30	The Roles of mTOR Complexes in Lipid Metabolism. Annual Review of Nutrition, 2015, 35, 321-348.	4.3	245
31	DEP domainâ€containing mTORâ€interacting protein in the rat brain: Distribution of expression and potential implication. Journal of Comparative Neurology, 2015, 523, 93-107.	0.9	15
32	The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R158-R166.	0.9	25
33	A Mitofusin-2–dependent inactivating cleavage of Opa1 links changes in mitochondria <i>cristae</i> and ER contacts in the postprandial liver. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16017-16022.	3.3	148
34	Interrelationships between ghrelin, insulin and glucose homeostasis: Physiological relevance. World Journal of Diabetes, 2014, 5, 328.	1.3	64
35	Role of leptin resistance in the development of obesity in older patients. Clinical Interventions in Aging, 2013, 8, 829.	1.3	77