Volker Enzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9280817/publications.pdf

Version: 2024-02-01

279798 315739 2,575 75 23 38 h-index citations g-index papers 79 79 79 3083 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Antineonatal Fc Receptor Antibody Treatment Ameliorates MOG-IgG–Associated Experimental Autoimmune Encephalomyelitis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	12
2	Diverse Signaling by $TGF\hat{l}^2$ Isoforms in Response to Focal Injury is Associated with Either Retinal Regeneration or Reactive Gliosis. Cellular and Molecular Neurobiology, 2021, 41, 43-62.	3.3	20
3	Sodium Iodate-Induced Degeneration Results in Local Complement Changes and Inflammatory Processes in Murine Retina. International Journal of Molecular Sciences, 2021, 22, 9218.	4.1	29
4	The TGFÎ 2 /Notch axis facilitates MÃ 1 /4ller cell-to-epithelial transition to ultimately form a chronic glial scar. Molecular Neurodegeneration, 2021, 16, 69.	10.8	18
5	Complement Factor H-Related 3 Enhanced Inflammation and Complement Activation in Human RPE Cells. Frontiers in Immunology, 2021, 12, 769242.	4.8	15
6	Properdin Modulates Complement Component Production in Stressed Human Primary Retinal Pigment Epithelium Cells. Antioxidants, 2020, 9, 793.	5.1	11
7	Ranibizumab and Bevacizumab but Not Aflibercept Inhibit Proliferation of Primary Human Retinal Pigment Epithelium in vitro. Ophthalmologica, 2019, 241, 137-142.	1.9	3
8	Transcriptome Analysis Did Not Show Endogenous Stem Cell Characteristics in Murine Lgr5+ Retinal Cells. International Journal of Molecular Sciences, 2019, 20, 3547.	4.1	1
9	Extraocular muscle function is impaired in <i>ryr3</i> â^'/â^' mice. Journal of General Physiology, 2019, 151, 929-943.	1.9	11
10	Retinal microglia signaling affects Mýller cell behavior in the zebrafish following laser injury induction. Glia, 2019, 67, 1150-1166.	4.9	73
11	Oxidative Stress Increases Endogenous Complement-Dependent Inflammatory and Angiogenic Responses in Retinal Pigment Epithelial Cells Independently of Exogenous Complement Sources. Antioxidants, 2019, 8, 548.	5.1	22
12	HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model. EBioMedicine, 2018, 27, 258-274.	6.1	17
13	CXCL12/SDF-1-Dependent Retinal Migration of Endogenous Bone Marrow-Derived Stem Cells Improves Visual Function after Pharmacologically Induced Retinal Degeneration. Stem Cell Reviews and Reports, 2017, 13, 278-286.	5.6	17
14	Müller Glia Cell Activation in a Laser-induced Retinal Degeneration and Regeneration Model in Zebrafish. Journal of Visualized Experiments, 2017 , , .	0.3	12
15	Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases. Frontiers in Immunology, 2016, 7, 542.	4.8	29
16	RETC-2: An antibody for highly specific FHR-3 detection from human blood, retinal microglia cells and for diminishing molecular FHR-3 interactions. Immunobiology, 2016, 221, 1206.	1.9	0
17	Characteristics of Mýller glial cells in MNU-induced retinal degeneration. Visual Neuroscience, 2016, 33, E013.	1.0	5
18	Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice. Experimental Eye Research, 2016, 153, 178-185.	2.6	12

#	Article	IF	Citations
19	Inhibition of the $TGF\hat{l}^2$ Pathway Enhances Retinal Regeneration in Adult Zebrafish. PLoS ONE, 2016, 11, e0167073.	2.5	30
20	Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Translational Vision Science and Technology, 2015, 4, 9.	2.2	72
21	Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways. International Journal of Molecular Sciences, 2015, 16, 15086-15103.	4.1	51
22	Photopic and scotopic spatiotemporal tuning of adult zebrafish vision. Frontiers in Systems Neuroscience, 2015, 9, 20.	2.5	8
23	Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Experimental Cell Research, 2015, 333, 11-20.	2.6	26
24	Assessment of ultra-high resolution optical coherence tomography for monitoring tissue effects caused by laser photocoagulation of ex-vivo porcine retina. , 2015, , .		2
25	Multiple programmed cell death pathways are involved in N-methyl-N-nitrosourea-induced photoreceptor degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 721-731.	1.9	14
26	Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Biomedical Microdevices, 2015, 17, 85.	2.8	25
27	Fluorescence Lifetime Imaging of the Ocular Fundus in Mice. , 2014, 55, 7206.		23
28	Retinal Laser Lesion Visibility in Simultaneous Ultra-High Axial Resolution Optical Coherence Tomography. IEEE Photonics Journal, 2014, 6, 1-11.	2.0	12
29	Bone marrow-derived mesenchymal stromal cells improve vascular regeneration and reduce leukocyte-endothelium activation in critical ischemic murine skin in a dose-dependent manner. Cytotherapy, 2014, 16, 1345-1360.	0.7	22
30	Vitreoretinal Interface Changes in Geographic Atrophy. Ophthalmology, 2014, 121, 1734-1739.	5.2	7
31	Methylnitrosourea (MNU)-induced Retinal Degeneration and Regeneration in the Zebrafish: Histological and Functional Characteristics. Journal of Visualized Experiments, 2014, , e51909.	0.3	11
32	Detection of Chlamydia and Complement Factors in Neovascular Membranes of Patients with Age-related Macular Degeneration. Ocular Immunology and Inflammation, 2013, 21, 36-43.	1.8	3
33	Characteristics of Rod Regeneration in a Novel Zebrafish Retinal Degeneration Model Using N-Methyl-N-Nitrosourea (MNU). PLoS ONE, 2013, 8, e71064.	2.5	36
34	Presence of the Gpr179(nob5) allele in a C3H-derived transgenic mouse. Molecular Vision, 2013, 19, 2615-25.	1.1	11
35	RASAGILINE INTERFERES WITH NEURODEGENERATION IN THE PRPH2/RDS MOUSE. Retina, 2012, 32, 617-628.	1.7	21
36	Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvascular Research, 2012, 83, 267-275.	2.5	86

#	Article	IF	Citations
37	Visual acuity and contrast sensitivity of adult zebrafish. Frontiers in Zoology, 2012, 9, 10.	2.0	51
38	Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 859-869.	1.9	24
39	Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases. Stem Cell Reviews and Reports, 2011, 7, 434-445.	5.6	77
40	Morphology and Hemodynamics during Vascular Regeneration in Critically Ischemic Murine Skin Studied by Intravital Microscopy Techniques. European Surgical Research, 2011, 47, 222-230.	1.3	10
41	Predictors of Short-Term Visual Outcome after Anti-VEGF Therapy of Macular Edema due to Central Retinal Vein Occlusion., 2011, 52, 3334.		51
42	Blue-Light versus Green-Light Autofluorescence: Lesion Size of Areas of Geographic Atrophy. , 2011, 52, 9497.		50
43	Macular Thickness Measurements in Healthy Eyes Using Six Different Optical Coherence Tomography Instruments., 2009, 50, 3432.		393
44	Decreased Visual Function after Patchy Loss of Retinal Pigment Epithelium Induced by Low-Dose Sodium Iodate., 2009, 50, 4004.		79
45	Stem Cells as Tools in Regenerative Therapy for Retinal Degeneration. JAMA Ophthalmology, 2009, 127, 563.	2.4	57
46	Identification of small Sca-1+, Linâ^', CD45â^' multipotential cells in the neonatal murine retina. Experimental Hematology, 2009, 37, 1096-1107.e1.	0.4	30
47	COMPLEMENT FACTOR P IN CHOROIDAL NEOVASCULAR MEMBRANES OF PATIENTS WITH AGE-RELATED MACULAR DEGENERATION. Retina, 2009, 29, 966-973.	1.7	11
48	Long-term cellular and regional specificity of the photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Visual Neuroscience, 2008, 25, 167-177.	1.0	25
49	Morphologic Changes in Patients with Geographic Atrophy Assessed with a Novel Spectral OCT–SLO Combination. , 2008, 49, 3095.		130
50	Endogenous Bone Marrow–Derived Cells Express Retinal Pigment Epithelium Cell Markers and Migrate to Focal Areas of RPE Damage. , 2007, 48, 4321.		46
51	An adaptive ERG technique to measure normal and altered dark adaptation in the mouse. Documenta Ophthalmologica, 2007, 115, 155-163.	2.2	7
52	Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Experimental Eye Research, 2006, 82, 441-448.	2.6	120
53	Systemically transferred hematopoietic stem cells home to the subretinal space and express RPE-65 in a mouse model of retinal pigment epithelium damage. Experimental Eye Research, 2006, 83, 1295-1302.	2.6	42
54	Retinal Pigment Epithelium Damage Enhances Expression of Chemoattractants and Migration of Bone Marrow–Derived Stem Cells. , 2006, 47, 1646.		75

#	Article	IF	Citations
55	The activation of IL-8 receptors in cultured guinea pig Mýller glial cells is modified by signals from retinal pigment epithelium. Journal of Neuroimmunology, 2005, 161, 49-60.	2.3	18
56	Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit. Journal of Neural Engineering, 2005, 2, S48-S56.	3.5	110
57	Retinal pigment epithelial cells activate uveitogenic T cells when they express high levels of MHC class II molecules, but inhibit T cell activation when they express restricted levels. Journal of Neuroimmunology, 2003, 144, 1-8.	2.3	35
58	Differentiation of cones in cultured rabbit retina: effects of retinal pigment epithelial cell-conditioned medium. Neuroscience Letters, 2003, 341, 53-56.	2.1	6
59	Enhanced Induction of RPE Lineage Markers in Pluripotent Neural Stem Cells Engrafted into the Adult Rat Subretinal Space. , 2003, 44, 5417.		33
60	Influence of Interleukin 10 and Transforming Growth Factor- \hat{l}^2 on T Cell Stimulation through Allogeneic Retinal Pigment Epithelium Cells in vitro. Ophthalmic Research, 2002, 34, 232-240.	1.9	8
61	Minor influence of the immunosuppressive cytokines IL-10 and TGF-ß on the proliferation and apoptosis of human retinal pigment epithelial (RPE) cells in vitro. Ocular Immunology and Inflammation, 2001, 9, 259-266.	1.8	5
62	The influence of pro-inflammatory cytokines on human retinal pigment epithelium cell receptors. Graefe's Archive for Clinical and Experimental Ophthalmology, 2001, 239, 294-301.	1.9	10
63	Molecular and cellular evidence for T-cell stimulation by allogeneic retinal pigment epithelium cells in vitro. Graefe's Archive for Clinical and Experimental Ophthalmology, 2001, 239, 445-451.	1.9	9
64	Immunosuppression by IL-10-transfected human retinal pigment epithelial cells in vitro. Current Eye Research, 2001, 23, 98-105.	1.5	4
65	Farnesol modulates membrane currents in human retinal glial cells. Journal of Neuroscience Research, 2000, 62, 396-402.	2.9	16
66	Changes in the mRNA expression of cytokines and chemokines by stimulated RPE cells in vitro. Current Eye Research, 2000, 20, 488-495.	1.5	17
67	Farnesol modulates membrane currents in human retinal glial cells. , 2000, 62, 396.		1
68	Down-Regulation of MHC Class II Expression on Bovine Retinal Pigment Epithelial Cells by Cytokines. Ophthalmic Research, 1999, 31, 256-266.	1.9	15
69	Effective chemokines and cytokines in the rejection of human retinal pigment epithelium (RPE) cell grafts. Transplant Immunology, 1999, 7, 9-14.	1.2	21
70	In-vitro methods to decrease MHC class II-positive cells in retinal pigment epithelium cell grafts. Ocular Immunology and Inflammation, 1998, 6, 145-153.	1.8	8
71	Secretion of Cytokines by Human Choroidal Melanoma Cells and Skin Melanoma Cell Lines in vitro. Ophthalmic Research, 1998, 30, 189-194.	1.9	7
72	Mechanisms of Graft Rejection in the Transplantation of Retinal Pigment Epithelial Cells. Ophthalmic Research, 1997, 29, 298-304.	1.9	39

#	Article	IF	CITATIONS
73	Modification of glutamine synthetase expression by mammalian Mýller (glial) cells in retinal organ cultures. NeuroReport, 1997, 8, 3067-3072.	1.2	42
74	Porcine Iris Pigment Epithelial Cells can take up Retinal Outer Segments. Experimental Eye Research, 1997, 65, 277-287.	2.6	54
75	An improved MTT assay using the electron-coupling agent menadione. Journal of Immunological Methods, 1994, 168, 253-256.	1.4	64