Eduardo Ruiz-Hitzky

List of Publications by Citations

Source: https://exaly.com/author-pdf/9280479/eduardo-ruiz-hitzky-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 251
papers
 11,472
citations
 57
h-index
 97
g-index

 286
ext. papers
 12,383
ext. citations
 6.9
avg, IF
 6.49
L-index

#	Paper	IF	Citations
251	Biopolymer [Ilay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. <i>Chemistry of Materials</i> , 2003 , 15, 3774-3780	9.6	557
250	Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. <i>Advanced Materials</i> , 2007 , 19, 1309-1319	24	532
249	Poly(ethylene oxide)-silicate intercalation materials. <i>Chemistry of Materials</i> , 1992 , 4, 1395-1403	9.6	472
248	Hybrid materials based on clays for environmental and biomedical applications. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9306		265
247	Molecular access to intracrystalline tunnelsof sepiolite. <i>Journal of Materials Chemistry</i> , 2001 , 11, 86-91		265
246	Advances in biomimetic and nanostructured biohybrid materials. <i>Advanced Materials</i> , 2010 , 22, 323-36	24	251
245	Bio-Nanocomposites Based on Layered Double Hydroxides. <i>Chemistry of Materials</i> , 2005 , 17, 1969-1977	9.6	243
244	ChitosanElay nanocomposites: application as electrochemical sensors. <i>Applied Clay Science</i> , 2005 , 28, 199-208	5.2	237
243	Bionanocomposites based on alginateZein/layered double hydroxide materials as drug delivery systems. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9495		208
242	Conducting Polymers Intercalated in Layered Solids. <i>Advanced Materials</i> , 1993 , 5, 334-340	24	205
241	Selective Functionalization of Mesoporous Silica. <i>Advanced Materials</i> , 2000 , 12, 430-432	24	195
240	Functional biopolymer nanocomposites based on layered solids. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3650		191
239	Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. <i>Chemical Society Reviews</i> , 2011 , 40, 801-28	58.5	185
238	Microfibrous Chitosan Bepiolite Nanocomposites. <i>Chemistry of Materials</i> , 2006 , 18, 1602-1610	9.6	182
237	Polymer-salt intercalation complexes in layer silicates. <i>Advanced Materials</i> , 1990 , 2, 545-547	24	182
236	Fibrous clays based bionanocomposites. <i>Progress in Polymer Science</i> , 2013 , 38, 1392-1414	29.6	179
235	History of OrganicIhorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1704158	15.6	167

(2020-2014)

234	Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. <i>International Journal of Pharmaceutics</i> , 2014 , 463, 1-9	6.5	163
233	Intracrystalline grafting on layer silicic acids. <i>Nature</i> , 1980 , 287, 28-30	50.4	163
232	TitaniaBepiolite Nanocomposites Prepared by a Surfactant Templating Colloidal Route. <i>Chemistry of Materials</i> , 2008 , 20, 84-91	9.6	137
231	Functionalizing inorganic solids: towards organic-inorganic nanostructured materials for intelligent and bioinspired systems. <i>Chemical Record</i> , 2003 , 3, 88-100	6.6	123
230	Magnetic behavior of an array of cobalt nanowires. <i>Journal of Applied Physics</i> , 1999 , 85, 5480-5482	2.5	108
229	Poly(ethylene oxide)/NH4+-smectite nanocomposites. <i>Applied Clay Science</i> , 1999 , 15, 119-135	5.2	102
228	Adsorption of Monovalent Organic Cations on Sepiolite: Experimental Results and Model Calculations. <i>Clays and Clay Minerals</i> , 1998 , 46, 340-348	2.1	100
227	Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. <i>Inorganic Chemistry</i> , 1988 , 27, 2785-2790	5.1	91
226	Inorganic solids in dry medialan efficient way for developing microwave irradiation activated organic reactions. <i>Tetrahedron Letters</i> , 1989 , 30, 945-948	2	89
225	Polysaccharide fi brous clay bionanocomposites. <i>Applied Clay Science</i> , 2014 , 96, 2-8	5.2	85
224	Templated Synthesis of Carbon Nanofibers from Polyacrylonitrile Using Sepiolite. <i>Advanced Functional Materials</i> , 2004 , 14, 77-82	15.6	84
223	Mechanism of the grafting of organosilanes on mineral surfaces. <i>Colloid and Polymer Science</i> , 1985 , 263, 1025-1030	2.4	84
222	Bio-organoclays based on phospholipids as immobilization hosts for biological species. <i>Langmuir</i> , 2010 , 26, 5217-25	4	82
221	New titania-clay nanostructured porous materials. <i>Microporous and Mesoporous Materials</i> , 2010 , 131, 252-260	5.3	82
220	Electrical characterization of poly(ethylene oxide) Elay nanocomposites prepared by microwave irradiation. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 3249-3263	2.6	76
219	Nanostructured Hybrid Materials Formed by Sequestration of Pyridine Molecules in the Tunnels of Sepiolite. <i>Chemistry of Materials</i> , 2003 , 15, 4956-4967	9.6	76
218	Oxygen reactivity in vanadium pentoxide: electronic structure and infrared spectroscopy studies. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 8960-8965		75
217	Nanotechnology Responses to COVID-19. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000979	10.1	75

216	Synthesis of p-cymene from limonene, a renewable feedstock. <i>Applied Catalysis B: Environmental</i> , 2008 , 81, 218-224	21.8	73
215	Structural Fluorine in Sepiolite. <i>Clays and Clay Minerals</i> , 1990 , 38, 63-68	2.1	71
214	Organomineral Derivatives Obtained by Reacting Organochlorosilanes with the Surface of Silicates in Organic Solvents. <i>Clays and Clay Minerals</i> , 1976 , 24, 25-30	2.1	71
213	PEO intercalation in layered chalcogenides. <i>Advanced Materials</i> , 1993 , 5, 738-741	24	70
212	Relevance of polymerland biopolymerlalay nanocomposites in electrochemical and electroanalytical applications. <i>Thin Solid Films</i> , 2006 , 495, 104-112	2.2	69
211	Bionanocomposites as New Carriers for Influenza Vaccines. <i>Advanced Materials</i> , 2009 , 21, 4167-4171	24	64
21 0	Caramelllay nanocomposites. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3913		62
209	Epoxide rearrangements on mineral and silica-alumina surfaces. <i>Journal of Catalysis</i> , 1985 , 92, 291-295	7.3	62
208	Encapsulation of enzymes in alumina membranes of controlled pore size. <i>Thin Solid Films</i> , 2006 , 495, 321-326	2.2	61
207	Novel OrganicIhorganic Mesophases: Self-Templating Synthesis and Intratubular Swelling. <i>Advanced Materials</i> , 2002 , 14, 439-443	24	61
206	Silica-clay nanocomposites. <i>Chemical Communications</i> , 2003 , 2996-7	5.8	61
205	ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. <i>Applied Clay Science</i> , 2018 , 156, 104-109	5.2	60
204	Crown ether intercalations with phyllosilicates. <i>Nature</i> , 1978 , 276, 596-597	50.4	60
203	Intercalation of Poly(Ethylene Oxide) Derivatives into Layered Double Hydroxides. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 1242-1251	2.3	59
202	Fe-containing pillared clays as catalysts for phenol hydroxylation. <i>Applied Clay Science</i> , 2003 , 22, 263-27	7 5.2	59
201	Adsorption of methylene blue on sepiolite gels: spectroscopic and rheological studies. <i>Clay Minerals</i> , 1992 , 27, 101-108	1.3	59
200	Sepiolite-based materials for the photo- and thermal-stabilization of pesticides. <i>Applied Clay Science</i> , 2001 , 18, 245-254	5.2	58
199	Assessing cellulose nanofiber production from olive tree pruning residue. <i>Carbohydrate Polymers</i> , 2018 , 179, 252-261	10.3	57

(2002-2016)

198	Clay-Graphene Nanoplatelets Functional Conducting Composites. <i>Advanced Functional Materials</i> , 2016 , 26, 7394-7405	15.6	57	
197	A Colloidal Route for Delamination of Layered Solids: Novel Porous-Clay Nanocomposites. <i>Advanced Functional Materials</i> , 2006 , 16, 401-409	15.6	57	
196	Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. <i>Applied Clay Science</i> , 2005 , 28, 183-198	5.2	56	
195	Chapter 10.3 Clay Mineralland Organoclay Polymer Nanocomposite. <i>Developments in Clay Science</i> , 2006 , 583-621		56	
194	New polyelectrolyte materials based on smectite polyoxyethylene intercalation compounds. <i>Acta Polymerica</i> , 1994 , 45, 59-67		55	
193	Multifunctional materials based on graphene-like/sepiolite nanocomposites. <i>Applied Clay Science</i> , 2010 , 47, 203-211	5.2	54	
192	Clay-supported graphene materials: application to hydrogen storage. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18635-41	3.6	53	
191	Functionalized carbon-silicates from caramel-sepiolite nanocomposites. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 923-5	16.4	50	
190	Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. Journal of Magnetism and Magnetic Materials, 2007 , 316, 110-113	2.8	50	
189	Ultrasound assisted preparation of chitosan Idermiculite bionanocomposite foams for cadmium uptake. <i>Applied Clay Science</i> , 2016 , 130, 40-49	5.2	48	
188	New silica/aluminallay heterostructures: Properties as acid catalysts. <i>Microporous and Mesoporous Materials</i> , 2012 , 147, 157-166	5.3	48	
187	Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 221-9	1.3	48	
186	Sustainable p-cymene and hydrogen from limonene. Applied Catalysis A: General, 2010, 387, 141-146	5.1	48	
185	Ionic conductivity in layer silicates controlled by intercalation of macrocyclic and polymeric oxyethylene compounds. <i>Electrochimica Acta</i> , 1992 , 37, 1573-1577	6.7	47	
184	Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes. <i>ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	46	
183	ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. <i>Applied Clay Science</i> , 2016 , 131, 131-139	5.2	45	
182	Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite. <i>Journal of Thermal Analysis and Calorimetry</i> , 2003 , 71, 751-759	4.1	44	
181	Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites. <i>Applied Clay Science</i> , 2002 , 22, 103-113	5.2	43	

180	Poly(3,4-ethylenedioxythiophene)Elay nanocomposites. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2227		42
179	Advanced Materials and New Applications of Sepiolite and Palygorskite. <i>Developments in Clay Science</i> , 2011 , 3, 393-452		41
178	Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. <i>Journal of Hazardous Materials</i> , 2017 , 340, 281-290	12.8	39
177	Zein Eibrous Clays Biohybrid Materials. European Journal of Inorganic Chemistry, 2012, 2012, 5216-5224	2.3	39
176	Gelatin renaturation and the interfacial role of fillers in bionanocomposites. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4901-10	3.6	39
175	Intercalation of metformin into montmorillonite. <i>Dalton Transactions</i> , 2018 , 47, 3185-3192	4.3	36
174	Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores. <i>Nanoscale Research Letters</i> , 2007 , 2, 355-363	5	36
173	Silica/clay organo-heterostructures to promote polyethylenellay nanocomposites by in situ polymerization. <i>Applied Catalysis A: General</i> , 2013 , 453, 142-150	5.1	35
172	Multifunctional porous materials through ferrofluids. <i>Advanced Materials</i> , 2011 , 23, 5224-8	24	35
171	INORGANIC -ORGANIC NANOCOMPOSITE MATERIALS BASED ON MACROCYCLIC COMPOUNDS. Reviews in Inorganic Chemistry, 2001 , 21, 125-159	2.4	35
170	Mechanism of the grafting of organosilanes on mineral surfaces. IV. Phenylderivatives of sepiolite and poly (organosiloxanes). <i>Colloid and Polymer Science</i> , 1992 , 270, 165-176	2.4	35
169	Bio-Nanohybrids Based on Layered Inorganic Solids: Gelatin Nanocomposites. <i>Current Nanoscience</i> , 2006 , 2, 231-241	1.4	35
168	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. <i>Advanced Functional Materials</i> , 2018 , 28, 1703048	15.6	35
167	Novel architectures in porous materials based on clays. <i>Journal of Sol-Gel Science and Technology</i> , 2014 , 70, 307-316	2.3	34
166	Redox intercalation of alkylammonium ions into VOAO4.nH2O (A=P, As). <i>Materials Research Bulletin</i> , 1985 , 20, 549-555	5.1	34
165	Intercalation of Macrocyclic Compounds (Crown Ethers and Cryptands) into 2:1 Phyllosilicates. Stability and Calorimetric Study. <i>Langmuir</i> , 1994 , 10, 1207-1212	4	32
164	New polyoxyethylene intercalation materials in vanadium oxide xerogel. <i>Journal of Materials Chemistry</i> , 1992 , 2, 581		32
163	Intracrystalline alkylation of benzoate ions into layered double hydroxides. <i>Journal of Materials Chemistry</i> , 2001 , 11, 554-560		31

(2020-1986)

162	Interlayer adsorption of ammonia and pyridine in V2O5 xerogel. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1986 , 82, 1597		31
161	Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. <i>Carbohydrate Polymers</i> , 2017 , 157, 1933-1939	10.3	30
160	Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal. <i>Dalton Transactions</i> , 2014 , 43, 10512-20	4.3	30
159	Interaccion de isocianatos con sepiolita. <i>Clay Minerals</i> , 1979 , 14, 295-305	1.3	30
158	Photoactive nanoarchitectures based on clays incorporating TiO and ZnO nanoparticles. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1140-1156	3	29
157	Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 2014, 477, 553-63	6.5	29
156	Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. <i>RSC Advances</i> , 2014 , 4, 35415	3.7	29
155	Design and preparation of bionanocomposites based on layered solids with functional and structural properties. <i>Materials Science and Technology</i> , 2008 , 24, 1100-1110	1.5	29
154	Preparation and characterization of LiNi0.8Co0.2O2/PANI microcomposite electrode materials under assisted ultrasonic irradiation. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 308-314	3.3	29
153	Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. <i>Chemical Record</i> , 2018 , 18, 1125-1137	6.6	28
152	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014 , 2, 1391-1399	13	28
151	SilicaBlumina/sepiolite nanoarchitectures. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7477	13	28
150	The Maya blue nanostructured material concept applied to colouring geopolymers. <i>RSC Advances</i> , 2015 , 5, 98834-98841	3.7	28
149	Reactive nanocomposites based on pillared clays. <i>Journal of Materials Chemistry</i> , 1999 , 9, 161-167		28
148	Rhodium complexes with nitrogen-donor ligands anchored on silicic supports. 1. Synthesis and characterization. <i>Chemistry of Materials</i> , 1992 , 4, 49-55	9.6	28
147	Mechanism of the grafting of organosilanes on mineral surfaces. <i>Colloid and Polymer Science</i> , 1979 , 257, 178-181	2.4	28
146	Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. <i>Scientific Reports</i> , 2017 , 7, 5586	4.9	27
145	Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. <i>Dalton Transactions</i> , 2020 , 49, 3830-3840	4.3	27

144	Lipid-Based Bio-Nanohybrids for Functional Stabilisation of Influenza Vaccines. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5186-5191	2.3	26
143	Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. <i>Journal of Crystal Growth</i> , 2008 , 310, 5331-5340	1.6	26
142	Synthesis of pillared clays assisted by microwaves. <i>Materials Research Bulletin</i> , 1999 , 34, 641-651	5.1	26
141	Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. <i>Scientific Reports</i> , 2016 , 6, 36341	4.9	25
140	TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. <i>Microporous and Mesoporous Materials</i> , 2016 , 222, 120-127	5.3	25
139	Assembling nanotubes and nanofibres: Cooperativeness in sepiolitedarbon nanotube materials. <i>Carbon</i> , 2014 , 72, 296-303	10.4	25
138	Silica-sepiolite nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2013, 13, 2897-907	1.3	25
137	Lithium-niobium vanadium oxide and lithium-tantalum vanadium oxide, MVO5, bronzes. <i>Chemistry of Materials</i> , 1992 , 4, 62-67	9.6	25
136	Mechanism of the grafting of organosilanes on mineral surfaces I. Nature and role of the hydrolysis products of the methylvinyldichlorosilane in the grafting of silicates in hydrochloric acid and isopropanol. <i>Colloid and Polymer Science</i> , 1978 , 256, 135-139	2.4	25
135	Toward a green way for the chemical production of supported graphenes using porous solids. Journal of Materials Chemistry A, 2014 , 2, 2009-2017	13	24
134	Composite membranes based on macrocycle/polysiloxanes: preparation, characterization and electrochemical behaviour. <i>Journal of Materials Chemistry</i> , 1995 , 5, 817-825		24
133	MVO5(M = Nb, Ta) mixed oxides: solਊel synthesis, structural and thermal characterization and electrochemical Li+ insertion. <i>Journal of Materials Chemistry</i> , 1996 , 6, 1005-1011		24
132	Intercalation mechanism of nitrogenated bases into V2O5 xerogel. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1989 , 85, 4167		24
131	Hierarchically structured bioactive foams based on polyvinyl alcohol-sepiolite nanocomposites. Journal of Materials Chemistry B, 2013 , 1, 2911-2920	7.3	23
130	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. <i>Advanced Functional Materials</i> , 2013 , 23, 254-262	15.6	23
129	Amino-polysiloxane hybrid materials as carbon composite electrodes for potentiometric detection of anions. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3844		23
128	Interlayer Adsorption of Macrocyclic Compounds (Crown-Ethers and Cryptands) in 2:1 Phyllosilicates: II. Structural Features. <i>Clay Minerals</i> , 1994 , 29, 191-203	1.3	23
127	Nanoarchitectures based on layered titanosilicates supported on glass fibers: application to hydrogen storage. <i>Langmuir</i> , 2013 , 29, 7449-55	4	22

126	Synthesis and characterization of the new mixed oxide NbVO5. <i>Materials Letters</i> , 1989 , 8, 132-136	3.3	22
125	Characterization of the interlayer water in niobyl phosphate hydrates by IR and NMR spectroscopies. <i>Inorganic Chemistry</i> , 1987 , 26, 847-850	5.1	22
124	Graphene-Clay Based Nanomaterials for Clean Energy Storage. <i>Science of Advanced Materials</i> , 2014 , 6, 151-158	2.3	21
123	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. <i>Advanced Functional Materials</i> , 2018 , 28, 1704323	15.6	21
122	AlgaeBilica systems as functional hybrid materials. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9362-9369		20
121	Novel magnetic organicIhorganic nanostructured materials. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4233		20
120	Amperometric Sensors Based on Mercaptopyridine Montmorillonite Intercalation Compounds. <i>Chemistry of Materials</i> , 2005 , 17, 708-715	9.6	20
119	Hybrid materials based on vanadium pentoxide intercalation complexes. <i>Colloid and Polymer Science</i> , 2001 , 279, 990-1004	2.4	20
118	Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. <i>Applied Clay Science</i> , 2018 , 160, 3-8	5.2	19
117	Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	19
116	Layered double hydroxide/sepiolite heterostructured materials. <i>Applied Clay Science</i> , 2016 , 130, 83-92	5.2	19
115	Recent Advances on Fibrous Clay-Based Nanocomposites. <i>Advances in Polymer Science</i> , 2014 , 39-86	1.3	19
114	Progress in Bionanocomposites: From green plastics to biomedical applications. <i>Progress in Polymer Science</i> , 2013 , 38, 1391	29.6	19
113	Characterization, pillaring and catalytic properties of a saponite from Victvaro, Madrid, Spain. <i>Clay Minerals</i> , 1997 , 32, 41-54	1.3	19
112	Intracrystalline reactivity of layered double hydroxides: carboxylate alkylations in dry media. <i>New Journal of Chemistry</i> , 2000 , 24, 119-121	3.6	19
111	Electrochemical characterization of composite membranes based on crown-ethers intercalated into montmorillonite. <i>Colloid and Polymer Science</i> , 1994 , 272, 712-720	2.4	19
110	Preparation and properties as positive electrodes of PANILiNi0.8Co0.2O2 nanocomposites. Journal of Materials Chemistry, 2008 , 18, 3965		18
109	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Lignin-Derived Biochar for Energy and Environmental Applications. <i>Energy Technology</i> , 2019 , 7, 277-287	, 3.5	18

108	Smectite-chitosan-based electrodes in electrochemical detection of phenol and its derivatives. <i>Applied Clay Science</i> , 2016 , 124-125, 62-68	5.2	17
107	Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 294, e69-e72	2.8	17
106	Fe-rich smectites from Gafsa (Tunisia): characterization and pillaring behaviour. <i>Clay Minerals</i> , 2002 , 37, 517-529	1.3	17
105	Multisensor device based on Case-Based Reasoning (CBR) for monitoring nutrient solutions in fertigation. <i>Sensors and Actuators B: Chemical</i> , 2009 , 135, 530-536	8.5	16
104	Case-based reasoning (CBR) for multicomponent analysis using sensor arrays: application to water quality evaluation. <i>Analyst, The</i> , 2002 , 127, 1580-2	5	16
103	Proton conductivity in Al-montmorillonite pillared clays. <i>Solid State Ionics</i> , 1996 , 85, 313-317	3.3	16
102	51V and 93Nb high resolution NMR study of NbVO5. <i>Journal of Materials Research</i> , 1991 , 6, 393-400	2.5	16
101	Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 1971-1982	3	16
100	Hybrid materials based on lichenpolysiloxane matrices: application as electrochemical sensors. Journal of Materials Chemistry, 2002 , 12, 3660-3664		15
99	Vibrational spectra of ammonium ions in crown-etherNH+4-montmorillonite complexes. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1984 , 80, 2225		15
98	Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 1772-1782	3	15
97	Bio-nanocomposites by assembling of gelatin and layered perovskite mixed oxides. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 1602-10	1.3	14
96	Laser microprobe mass spectrometry (LMMS) of intracrystalline crown ether and cryptand complexes in layer silicates. <i>Journal of Inclusion Phenomena</i> , 1988 , 6, 107-118		14
95	Interlayer adsorption of macrocyclic compounds (crown-ethers and cryptands) in 2:1 phyllosilicates: I. Isotherms and kinetics. <i>Clay Minerals</i> , 1986 , 21, 1-7	1.3	14
94	Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. <i>Chemical Record</i> , 2018 , 18, 849-857	6.6	13
93	Chitosan Based Films. Synthesis and Crystalline Properties of Nanocomposites with Amine Propyl Siloxane. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 1997 , 35, 61-70	3	13
92	Characterization of cobalt nanowires by means of force microscopy. <i>IEEE Transactions on Magnetics</i> , 2000 , 36, 2981-2983	2	13
91	Organosilicic membranes doped with crown-ethers. <i>Journal of Materials Chemistry</i> , 1993 , 3, 687-688		13

(2020-1995)

90	Structural Characterization and Electrical Properties of a Novel Defect Pyrochlore. <i>Journal of Solid State Chemistry</i> , 1995 , 116, 290-295	3.3	13	
89	Photo-oxidation of water mediated by a clay-anchored Os catalyst. <i>Journal of Molecular Catalysis</i> , 1985 , 33, 83-86		13	
88	Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. <i>Journal of Solid State Chemistry</i> , 2019 , 270, 287-294	3.3	13	
87	Amelioration of PEMFC performance at high temperature by incorporation of nanofiller (sepiolite/layered double hydroxide) in Nafion membrane. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 10666-10676	6.7	12	
86	Fibrous Clay Mineral Polymer Nanocomposites. <i>Developments in Clay Science</i> , 2013 , 5, 721-741		12	
85	Biomaterials from beer manufacture waste for bone growth scaffolds. <i>Green Chemistry Letters and Reviews</i> , 2011 , 4, 229-233	4.7	12	
84	29Si MAS-N.M.R. spectra of lamellar silicic acid H-magadiite and its trimethylsilyl derivative. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 1986 , 540, 227-233	1.3	12	
83	Polymer-Clay Nanocomposites as Precursors of Nanostructured Carbon Materials for Electrochemical Devices: Templating Effect of Clays. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1741-1750	1.3	12	
82	Composite Nanoarchitectonics: Alginate Beads Encapsulating Sepiolite/Magnetite/Prussian Blue for Removal of Cesium Ions from Water. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 122-132	5.1	12	
81	CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. <i>Clays and Clay Minerals</i> , 2019 , 67, 44-58	2.1	11	
80	In situ generation of 3D graphene-like networks from cellulose nanofibres in sintered ceramics. <i>Nanoscale</i> , 2018 , 10, 10488-10497	7.7	11	
79	Synthesis of 2,4-D ester herbicides. New routes using inorganic solid supports. <i>Green Chemistry</i> , 1999 , 1, 199-204	10	11	
78	Intercalation of Methylene Blue into vanadium pentoxide gels. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 4479		11	
77	Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. <i>Current Nanoscience</i> , 2009 , 5, 506-513	1.4	11	
76	Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates. <i>Journal of Materials Science</i> , 2017 , 52, 11269-11281	4.3	11	
75	Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. <i>Chemical Engineering Journal</i> , 2021 , 426, 130776	14.7	11	
74	Design, development and characterization of a nanomagnetic system based on iron oxide nanoparticles encapsulated in PLLA-nanospheres. <i>European Polymer Journal</i> , 2015 , 62, 145-154	5.2	10	
73	Chitosan and pectin coreBhell beads encapsulating metforminBlay intercalation compounds for controlled delivery. <i>New Journal of Chemistry</i> , 2020 , 44, 10102-10110	3.6	10	

72	Clay-Nanoarchitectures as Photocatalysts by Assembly of ZnO Nanoparticles and Clay Minerals. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 223-233	1.3	10
71	Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1303-1315	3	10
70	An Introduction to Bio-nanohybrid Materials1-40		10
69	Editorial [Trends in Bio-Hybrid Nanostructured Materials Guest Editors: Eduardo Ruiz-Hitzky and Margarita Darder]. <i>Current Nanoscience</i> , 2006 , 2, 153-153	1.4	10
68	Preparation of an Li0.7Ni0.8Co0.2O2 Electrode Material From a New Litto Ni Mixed-Citrate Precursor. European Journal of Inorganic Chemistry, 2005, 2005, 2698-2705	2.3	10
67	Hybrid Organic-Inorganic Electrode-Membranes Based on Organo-Polysiloxane/Macrocycle Systems. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 519, 211		10
66	Surface characterization of pure and chemically modified minerals by laser microprobe mass spectrometry. <i>Analytica Chimica Acta</i> , 1987 , 195, 331-336	6.6	10
65	Intracrystalline Complexation by Crown Ethers and Cryptands in Clay Minerals 1986, 179-189		10
64	Sepiolite-carbon nanocomposites doped with Pd as improving catalysts for hydrodechlorination processes. <i>Applied Clay Science</i> , 2018 , 161, 132-138	5.2	9
63	Elastic properties of natural single nanofibres. <i>RSC Advances</i> , 2014 , 4, 11225	3.7	9
62	One-step patterning of hybrid xerogel materials for the fabrication of disposable solid-state light emitters. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 5029-37	9.5	9
61	Advanced biohybrid materials based on nanoclays for biomedical applications 2012,		9
60	TayNb1ŪVO5 (0. <i>Catalysis Today</i> , 2003 , 78, 571-579	5.3	9
59	Beckmann Rearrangement Reactions on Acidic Solids. <i>Studies in Surface Science and Catalysis</i> , 1991 , 59, 539-547	1.8	9
58	Arylsulphonic Resins Based on Organic/Inorganic Macro-Molecular Systems. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1988 , 161, 459-469		9
57	Chapter 4:Nanoarchitectures Based on Clay Materials. <i>RSC Nanoscience and Nanotechnology</i> , 2012 , 87-	111	9
56	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021 , 417, 126068	12.8	9
55	Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. <i>Applied Clay Science</i> , 2020 , 191, 105613	5.2	8

54	Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose. <i>Applied Clay Science</i> , 2020 , 189, 105538	5.2	8
53	Nanostructured carbonfhetal hybrid aerogels from bacterial cellulose. <i>RSC Advances</i> , 2017 , 7, 42203-427	2 1.9	8
52	PROGRESS IN BIONANOCOMPOSITE MATERIALS. <i>Annual Review of Nano Research</i> , 2009 , 149-189		8
51	Microwave-Assisted Synthesis of MPS3 Materials (M = Mn, Cd) Using a Dewar-Ampoule Device. European Journal of Inorganic Chemistry, 2004 , 2004, 949-952	2.3	8
50	Selectivity of the Catalytic Rearrangement of 1,2-Glycols on Acidic Solids. <i>Studies in Surface Science and Catalysis</i> , 1988 , 41, 211-219	1.8	8
49	Laser microprobe mass analysis (LAMMA) of natural and organochlorosilane grafted sepiolite surfaces. <i>Mikrochimica Acta</i> , 1984 , 84, 117-128	5.8	8
48	Magnetic and electronic properties of bimagnetic materials comprising cobalt particles within hollow silica decorated with magnetite nanoparticles. <i>Journal of Applied Physics</i> , 2013 , 114, 124304	2.5	7
47	Insertion of In(III) and Ga(III) into MPS3 (M = Mn, Cd) layered materials. <i>Materials Research Bulletin</i> , 1999 , 34, 673-683	5.1	7
46	TaxNb1⊠VO5 (0 Journal of Solid State Chemistry, 1992 , 99, 258-266	3.3	7
45	Intercalation of Oxyethylene Compounds (Crown-Ethers and PEO) into Molybdenum Disulfide. <i>Journal of the Brazilian Chemical Society</i> , 1996 , 7, 193-197	1.5	7
44	Responses of human cells to sepiolite interaction. <i>Applied Clay Science</i> , 2020 , 194, 105655	5.2	7
43	Clay-lipid nanohybrids: towards influenza vaccines and beyond. <i>Clay Minerals</i> , 2016 , 51, 529-538	1.3	7
42	Silica-layered double hydroxide nanoarchitectured materials. <i>Applied Clay Science</i> , 2019 , 171, 65-73	5.2	7
41	Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. <i>Nanomaterials</i> , 2020 , 10,	5.4	6
40	Silacrown Ethers-Clay Intercalation Materials: Application in Potentiometric Sensors for Detection of Alkali-Ions. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 608-616	5.1	6
39	Nanoarchitectures by Sol G el from Silica and Silicate Building Blocks 2015 , 443-470		6
38	Application of the Electrochemical Impedance Technique to Study of Pillared Clays. <i>Chemistry of Materials</i> , 1998 , 10, 3379-3385	9.6	6
37	Genie Cristallin Dans Les Solides Organo-Mineraux. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1988 , 161, 433-452		6

36	Efficient and Ecological Removal of Anionic Pollutants by Cationic Starch-Clay Bionanocomposites. <i>Science of Advanced Materials</i> , 2013 , 5, 994-1005	2.3	6
35	Theoretical and experimental investigation on the intercalation of metformin into layered clay minerals. <i>Applied Clay Science</i> , 2020 , 186, 105418	5.2	5
34	ZeoliteBepiolite nanoheterostructures. <i>Journal of Nanostructure in Chemistry</i> , 2014 , 4, 1	7.6	5
33	Chitosan-Clay Bio-Nanocomposites. <i>Green Energy and Technology</i> , 2012 , 365-391	0.6	5
32	Silacrown modified xerogels as functional hybrid materials for carbon composite electrodes. <i>Comptes Rendus Chimie</i> , 2010 , 13, 227-236	2.7	5
31	Bottle-around-a-shipItonfinement of high loadings of Acridine Orange in new aluminophosphate crystalline materials. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1765-1771		5
30	Intercalation materials from azamacrocycles and layered sulfides: electrical and electrochemical behaviour. <i>Journal of Materials Chemistry</i> , 2004 , 14, 824		5
29	Microwave Assisted Blending-Intercalation of Ion-Conductor Polymers into Layered Silicates. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 519, 375		5
28	CHAPTER 1:Functional Nanocomposites Based on Fibrous Clays. <i>RSC Smart Materials</i> , 2016 , 1-53	0.6	5
27	Interaction des amides N-substitu\(\text{B}\)s avec des acides siliciques lamellaires. <i>Journal De Chimie Physique Et De Physico-Chimie Biologique</i> , 1984 , 81, 625-628		5
26	Modulation of Inorganic Matrices for Functional Nanoarchitectures Fabrication: The Simultaneous Effect of Moisture and Temperature in the Preparation of Metakaolin Based Geopolymers. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 1158-1167	5.1	4
25	ClayDrganic Interfaces for Design of Functional Hybrid Materials 2017, 1-84		4
24	Gelatine-based bio-nanocomposites 2011 , 209-233		4
23	Bionanocomposites 2008 , 1		4
22	Functionalized CarbonBilicates from CaramelBepiolite Nanocomposites. <i>Angewandte Chemie</i> , 2007 , 119, 941-943	3.6	4
21	Organic-Inorganic Materials: From Intercalation Chemistry to Devices 2005 , 15-49		4
20	Hybrid and Biohybrid Materials Based on Layered Clays 2015 , 245-297		3
19	Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair. Bio-Medical Materials and Engineering, 2013, 23, 405-21	1	3

18	Inorganic Nanoarchitectures Based on Sepiolite87-100		3
17	Research and Patents on Coronavirus and COVID-19: A Review. <i>Recent Patents on Nanotechnology</i> , 2020 , 14, 328-350	1.2	3
16	Bio-inorganic Nanohybrids Based on Organoclay Self-assembly239-270		2
15	Gelation under dynamic conditions: a strategy for in vitro cell ordering. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 795-802	4.5	2
14	Intracrystalline Pinacol Rearrangement in Layer Silicates. <i>Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics</i> , 1988 , 161, 453-458		2
13	Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. <i>Frontiers in Chemistry</i> , 2021 , 9, 733105	5	2
12	MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing <i>Advanced Healthcare Materials</i> , 2022 , e2102367	10.1	2
11	Zein-layered hydroxide biohybrids: strategies of synthesis and characterization. <i>Materials</i> , 2020 , 13,	3.5	1
10	Bioinspired Materials Chemistry I: Organic[horganic Nanocomposites 2012, 121-138		1
9	ClayDrganic Interactions 2004 ,		1
8	Electrical Properties of Oxyethylene Intercalated Compounds. <i>NATO ASI Series Series B: Physics</i> , 1993 , 397-400		1
7	Interdiffusive Surfactant Procedure for the Preparation of Nanoarchitectured Porous Films: Application to the Growth of Titania Thin Films on Silicon Substrates. <i>Langmuir</i> , 2019 , 35, 7169-7174	4	O
6	2018 Annual Report on Recent Patents on Nanotechnology. <i>Recent Patents on Nanotechnology</i> , 2019 , 13, 2	1.2	
5	Improving the Impact Factor of Recent Patents on Nanotechnology. <i>Recent Patents on Nanotechnology</i> , 2020 , 14, 2	1.2	
4	Conducting Composites: Clay-Graphene Nanoplatelets Functional Conducting Composites (Adv. Funct. Mater. 41/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 7539-7539	15.6	
3	Enzyme-Based Bioinorganic Materials443-484		
2	Gentamicin-Montmorillonite Intercalation Compounds as an Active Component of Hydroxypropylmethylcellulose Bionanocomposite Films with Antimicrobial Properties. <i>Clays and Clay Minerals</i> , 2021 , 69, 576	2.1	
1	Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1741-50	1.3	