
Eduardo Ruiz-Hitzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9280479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biopolymerâ^'Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials, 2003, 15, 3774-3780.	6.7	612
2	Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. Advanced Materials, 2007, 19, 1309-1319.	21.0	593
3	Poly(ethylene oxide)-silicate intercalation materials. Chemistry of Materials, 1992, 4, 1395-1403.	6.7	525
4	Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 2010, 20, 9306.	6.7	296
5	Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 2001, 11, 86-91.	6.7	294
6	Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 2010, 22, 323-336.	21.0	275
7	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	14.9	264
8	Bio-Nanocomposites Based on Layered Double Hydroxides. Chemistry of Materials, 2005, 17, 1969-1977.	6.7	261
9	Chitosan–clay nanocomposites: application as electrochemical sensors. Applied Clay Science, 2005, 28, 199-208.	5.2	261
10	Conducting Polymers Intercalated in Layered Solids. Advanced Materials, 1993, 5, 334-340.	21.0	235
11	Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 2010, 20, 9495.	6.7	233
12	Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 2005, 15, 3650.	6.7	218
13	Polymer-salt intercalation complexes in layer silicates. Advanced Materials, 1990, 2, 545-547.	21.0	213
14	Fibrous clays based bionanocomposites. Progress in Polymer Science, 2013, 38, 1392-1414.	24.7	209
15	Selective Functionalization of Mesoporous Silica. Advanced Materials, 2000, 12, 430-432.	21.0	208
16	Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews, 2011, 40, 801-828.	38.1	199
17	Microfibrous Chitosanâ^'Sepiolite Nanocomposites. Chemistry of Materials, 2006, 18, 1602-1610.	6.7	196
18	Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 2014, 463, 1-9.	5.2	193

#	Article	IF	CITATIONS
19	Intracrystalline grafting on layer silicic acids. Nature, 1980, 287, 28-30.	27.8	185
20	Titaniaâ ``Sepiolite Nanocomposites Prepared by a Surfactant Templating Colloidal Route. Chemistry of Materials, 2008, 20, 84-91.	6.7	150
21	Supported Graphene from Natural Resources: Easy Preparation and Applications. Advanced Materials, 2011, 23, 5250-5255.	21.0	149
22	Nanocomposite materials with controlled ion mobilityk. Advanced Materials, 1995, 7, 180-184.	21.0	130
23	Functionalizing Inorganic Solids: Towards Organic-Inorganic Nanostructured Materials for Intelligent and Bioinspired Systems. Chemical Record, 2003, 3, 88-100.	5.8	128
24	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	7.6	128
25	Adsorption of Monovalent Organic Cations on Sepiolite: Experimental Results and Model Calculations. Clays and Clay Minerals, 1998, 46, 340-348.	1.3	116
26	Magnetic behavior of an array of cobalt nanowires. Journal of Applied Physics, 1999, 85, 5480-5482.	2.5	116
27	Inorganic solids in "dry media―an efficient way for developing microwave irradiation activated organic reactions. Tetrahedron Letters, 1989, 30, 945-948.	1.4	110
28	Poly(ethylene oxide)/NH4+-smectite nanocomposites. Applied Clay Science, 1999, 15, 119-135.	5.2	110
29	Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry, 1988, 27, 2785-2790.	4.0	108
30	Mechanism of the grafting of organosilanes on mineral surfaces. Colloid and Polymer Science, 1985, 263, 1025-1030.	2.1	101
31	Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science, 2014, 96, 2-8.	5.2	100
32	Templated Synthesis of Carbon Nanofibers from Polyacrylonitrile Using Sepiolite. Advanced Functional Materials, 2004, 14, 77-82.	14.9	94
33	Synthesis of p-cymene from limonene, a renewable feedstock. Applied Catalysis B: Environmental, 2008, 81, 218-224.	20.2	94
34	New titania-clay nanostructured porous materials. Microporous and Mesoporous Materials, 2010, 131, 252-260.	4.4	94
35	Bio-organoclays Based on Phospholipids as Immobilization Hosts for Biological Species. Langmuir, 2010, 26, 5217-5225.	3.5	89
36	Oxygen reactivity in vanadium pentoxide: electronic structure and infrared spectroscopy studies. The Journal of Physical Chemistry, 1990, 94, 8960-8965.	2.9	88

#	Article	IF	CITATIONS
37	Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3249-3263.	2.1	86
38	Structural Fluorine in Sepiolite. Clays and Clay Minerals, 1990, 38, 63-68.	1.3	83
39	Organomineral Derivatives Obtained by Reacting Organochlorosilanes with the Surface of Silicates in Organic Solvents. Clays and Clay Minerals, 1976, 24, 25-30.	1.3	81
40	PEO intercalation in layered chalcogenides. Advanced Materials, 1993, 5, 738-741.	21.0	81
41	Nanostructured Hybrid Materials Formed by Sequestration of Pyridine Molecules in the Tunnels of Sepiolite. Chemistry of Materials, 2003, 15, 4956-4967.	6.7	80
42	Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers, 2018, 179, 252-261.	10.2	80
43	Relevance of polymer– and biopolymer–clay nanocomposites in electrochemical and electroanalytical applications. Thin Solid Films, 2006, 495, 104-112.	1.8	78
44	ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Applied Clay Science, 2018, 156, 104-109.	5.2	76
45	Chapter 10.3 Clay Mineral– and Organoclay–Polymer Nanocomposite. Developments in Clay Science, 2006, , 583-621.	0.5	75
46	Crown ether intercalations with phyllosilicates. Nature, 1978, 276, 596-597.	27.8	74
47	Caramel–clay nanocomposites. Journal of Materials Chemistry, 2005, 15, 3913.	6.7	74
48	Epoxide rearrangements on mineral and silica-alumina surfaces. Journal of Catalysis, 1985, 92, 291-295.	6.2	72
49	Silica–clay nanocomposites. Chemical Communications, 2003, , 2996-2997.	4.1	70
50	Clayâ€Graphene Nanoplatelets Functional Conducting Composites. Advanced Functional Materials, 2016, 26, 7394-7405.	14.9	70
51	Adsorption of methylene blue on sepiolite gels: spectroscopic and rheological studies. Clay Minerals, 1992, 27, 101-108.	0.6	69
52	Bionanocomposites as New Carriers for Influenza Vaccines. Advanced Materials, 2009, 21, 4167-4171.	21.0	69
53	Clay-supported graphene materials: application to hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18635.	2.8	69
54	New polyelectrolyte materials based on smectite polyoxyethylene intercalation compounds. Acta Polymerica, 1994, 45, 59-67.	0.9	68

#	Article	IF	CITATIONS
55	Novel Organic-Inorganic Mesophases: Self-Templating Synthesis and Intratubular Swelling. Advanced Materials, 2002, 14, 439-443.	21.0	67
56	Fe-containing pillared clays as catalysts for phenol hydroxylation. Applied Clay Science, 2003, 22, 263-277.	5.2	66
57	Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films, 2006, 495, 321-326.	1.8	66
58	A Colloidal Route for Delamination of Layered Solids: Novel Porous-Clay Nanocomposites. Advanced Functional Materials, 2006, 16, 401-409.	14.9	64
59	Sustainable p-cymene and hydrogen from limonene. Applied Catalysis A: General, 2010, 387, 141-146.	4.3	63
60	Sepiolite-based materials for the photo- and thermal-stabilization of pesticides. Applied Clay Science, 2001, 18, 245-254.	5.2	62
61	Intercalation of Poly(Ethylene Oxide) Derivatives into Layered Double Hydroxides. European Journal of Inorganic Chemistry, 2003, 2003, 1242-1251.	2.0	62
62	Ultrasound assisted preparation of chitosan–vermiculite bionanocomposite foams for cadmium uptake. Applied Clay Science, 2016, 130, 40-49.	5.2	60
63	Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Applied Clay Science, 2005, 28, 183-198.	5.2	59
64	Multifunctional materials based on graphene-like/sepiolite nanocomposites. Applied Clay Science, 2010, 47, 203-211.	5.2	59
65	Ionic conductivity in layer silicates controlled by intercalation of macrocyclic and polymeric oxyethylene compounds. Electrochimica Acta, 1992, 37, 1573-1577.	5.2	58
66	Functionalized Carbon–Silicates from Caramel–Sepiolite Nanocomposites. Angewandte Chemie - International Edition, 2007, 46, 923-925.	13.8	58
67	Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. Journal of Magnetism and Magnetic Materials, 2007, 316, 110-113.	2.3	58
68	Progress in Bionanocomposite and Bioinspired Foams. Advanced Materials, 2011, 23, 5262-5267.	21.0	58
69	New silica/alumina–clay heterostructures: Properties as acid catalysts. Microporous and Mesoporous Materials, 2012, 147, 157-166.	4.4	58
70	ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Applied Clay Science, 2016, 131, 131-139.	5.2	58
71	Advanced Materials and New Applications of Sepiolite and Palygorskite. Developments in Clay Science, 2011, 3, 393-452.	0.5	57
72	Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. Journal of Hazardous Materials, 2017, 340, 281-290.	12.4	57

#	Article	IF	CITATIONS
73	Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite. Journal of Thermal Analysis and Calorimetry, 2003, 71, 751-759.	3.6	54
74	Gelatin-Clay Bio-Nanocomposites: Structural and Functional Properties as Advanced Materials. Journal of Nanoscience and Nanotechnology, 2009, 9, 221-229.	0.9	52
75	Phospholipid–Sepiolite Biomimetic Interfaces for the Immobilization of Enzymes. ACS Applied Materials & Interfaces, 2011, 3, 4339-4348.	8.0	51
76	Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites. Applied Clay Science, 2002, 22, 103-113.	5.2	50
77	Photoactive nanoarchitectures based on clays incorporating TiO ₂ and ZnO nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1140-1156.	2.8	50
78	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. Advanced Functional Materials, 2018, 28, 1703048.	14.9	49
79	Zein-Fibrous Clays Biohybrid Materials. European Journal of Inorganic Chemistry, 2012, 2012, 5216-5224.	2.0	45
80	Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Transactions, 2020, 49, 3830-3840.	3.3	45
81	Redox intercalation of alkylammonium ions into VOAO4.nH2O (A=P, As). Materials Research Bulletin, 1985, 20, 549-555.	5.2	44
82	Mechanism of the grafting of organosilanes on mineral surfaces. IV. Phenylderivatives of sepiolite and poly (organosiloxanes). Colloid and Polymer Science, 1992, 270, 165-176.	2.1	44
83	Poly(3,4-ethylenedioxythiophene)–clay nanocomposites. Journal of Materials Chemistry, 2008, 18, 2227.	6.7	44
84	Composite Nanoarchitectonics: Alginate Beads Encapsulating Sepiolite/Magnetite/Prussian Blue for Removal of Cesium Ions from Water. Bulletin of the Chemical Society of Japan, 2021, 94, 122-132.	3.2	44
85	Gelatin renaturation and the interfacial role of fillers in bionanocomposites. Physical Chemistry Chemical Physics, 2011, 13, 4901-4910.	2.8	43
86	Intercalation of metformin into montmorillonite. Dalton Transactions, 2018, 47, 3185-3192.	3.3	43
87	Multifunctional Porous Materials Through Ferrofluids. Advanced Materials, 2011, 23, 5224-5228.	21.0	42
88	Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. Chemical Record, 2018, 18, 1125-1137.	5.8	42
89	Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chemical Engineering Journal, 2021, 426, 130776.	12.7	42
90	Interlayer adsorption of ammonia and pyridine in V2O5 xerogel. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 1597.	1.0	41

#	Article	IF	CITATIONS
91	INORGANIC -ORGANIC NANOCOMPOSITE MATERIALS BASED ON MACROCYCLIC COMPOUNDS. Reviews in Inorganic Chemistry, 2001, 21, 125-159.	4.1	40
92	Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohydrate Polymers, 2017, 157, 1933-1939.	10.2	40
93	New polyoxyethylene intercalation materials in vanadium oxide xerogel. Journal of Materials Chemistry, 1992, 2, 581.	6.7	39
94	Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Advances, 2014, 4, 35415.	3.6	39
95	Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores. Nanoscale Research Letters, 2007, 2, 355-363.	5.7	38
96	Intercalation of Macrocyclic Compounds (Crown Ethers and Cryptands) into 2:1 Phyllosilicates. Stability and Calorimetric Study. Langmuir, 1994, 10, 1207-1212.	3.5	37
97	Silica/clay organo-heterostructures to promote polyethylene–clay nanocomposites by in situ polymerization. Applied Catalysis A: General, 2013, 453, 142-150.	4.3	37
98	Novel architectures in porous materials based on clays. Journal of Sol-Gel Science and Technology, 2014, 70, 307-316.	2.4	37
99	Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 2014, 477, 553-563.	5.2	36
100	Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Applied Clay Science, 2018, 160, 3-8.	5.2	36
101	Bio-Nanohybrids Based on Layered Inorganic Solids: Gelatin Nanocomposites. Current Nanoscience, 2006, 2, 231-241.	1.2	36
102	Interaccion de isocianatos con sepiolita. Clay Minerals, 1979, 14, 295-305.	0.6	35
103	Structural Characterization and Electrical Properties of a Novel Defect Pyrochlore. Journal of Solid State Chemistry, 1995, 116, 290-295.	2.9	35
104	Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal. Dalton Transactions, 2014, 43, 10512-10520.	3.3	35
105	Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 2017, 7, 5586.	3.3	35
106	Mechanism of the grafting of organosilanes on mineral surfaces. Colloid and Polymer Science, 1979, 257, 178-181.	2.1	34
107	Intracrystalline alkylation of benzoate ions into layered double hydroxides. Journal of Materials Chemistry, 2001, 11, 554-560.	6.7	34
108	The Maya blue nanostructured material concept applied to colouring geopolymers. RSC Advances, 2015, 5, 98834-98841.	3.6	34

#	Article	IF	CITATIONS
109	Rhodium complexes with nitrogen-donor ligands anchored on silicic supports. 1. Synthesis and characterization. Chemistry of Materials, 1992, 4, 49-55.	6.7	33
110	Silica–alumina/sepiolite nanoarchitectures. Journal of Materials Chemistry A, 2013, 1, 7477.	10.3	33
111	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	10.3	33
112	Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 2016, 6, 36341.	3.3	33
113	Characterization of the interlayer water in niobyl phosphate hydrates by IR and NMR spectroscopies. Inorganic Chemistry, 1987, 26, 847-850.	4.0	32
114	Reactive nanocomposites based on pillared clays. Journal of Materials Chemistry, 1999, 9, 161-167.	6.7	32
115	Design and preparation of bionanocomposites based on layered solids with functional and structural properties. Materials Science and Technology, 2008, 24, 1100-1110.	1.6	32
116	Assembling nanotubes and nanofibres: Cooperativeness in sepiolite–carbon nanotube materials. Carbon, 2014, 72, 296-303.	10.3	32
117	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. Advanced Functional Materials, 2018, 28, 1704323.	14.9	32
118	Intercalation mechanism of nitrogenated bases into V2O5 xerogel. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 4167.	1.0	31
119	Interlayer Adsorption of Macrocyclic Compounds (Crown-Ethers and Cryptands) in 2:1 Phyllosilicates: II. Structural Features. Clay Minerals, 1994, 29, 191-203.	0.6	31
120	Preparation and characterization of LiNi0.8Co0.2O2/PANI microcomposite electrode materials under assisted ultrasonic irradiation. Journal of Solid State Chemistry, 2006, 179, 308-314.	2.9	31
121	Toward a green way for the chemical production of supported graphenes using porous solids. Journal of Materials Chemistry A, 2014, 2, 2009-2017.	10.3	31
122	Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. Nanomaterials, 2020, 10, 2077.	4.1	31
123	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	12.4	31
124	Lithium-niobium vanadium oxide and lithium-tantalum vanadium oxide, MVO5, bronzes. Chemistry of Materials, 1992, 4, 62-67.	6.7	30
125	Lipidâ€Based Bioâ€Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 2012, 5186-5191.	2.0	30
126	Silica-Sepiolite Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2013, 13, 2897-2907.	0.9	30

#	Article	lF	CITATIONS
127	TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. Microporous and Mesoporous Materials, 2016, 222, 120-127.	4.4	30
128	Mechanism of the grafting of organosilanes on mineral surfaces I. Nature and role of the hydrolysis products of the methylvinyldichlorosilane in the grafting of silicates in hydrochloric acid and isopropanol. Colloid and Polymer Science, 1978, 256, 135-139.	2.1	29
129	Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	29
130	Layered double hydroxide/sepiolite heterostructured materials. Applied Clay Science, 2016, 130, 83-92.	5.2	29
131	MXeneâ€Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Advanced Healthcare Materials, 2022, 11, e2102367.	7.6	29
132	Synthesis of pillared clays assisted by microwaves. Materials Research Bulletin, 1999, 34, 641-651.	5.2	28
133	Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. Journal of Crystal Growth, 2008, 310, 5331-5340.	1.5	27
134	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Advanced Functional Materials, 2013, 23, 254-262.	14.9	27
135	Graphene-Clay Based Nanomaterials for Clean Energy Storage. Science of Advanced Materials, 2014, 6, 151-158.	0.7	27
136	Amino-polysiloxane hybrid materials as carbon composite electrodes for potentiometric detection of anions. Journal of Materials Chemistry, 2005, 15, 3844.	6.7	26
137	Amelioration of PEMFC performance at high temperature by incorporation of nanofiller (sepiolite/layered double hydroxide) in Nafion membrane. International Journal of Hydrogen Energy, 2019, 44, 10666-10676.	7.1	26
138	Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New Journal of Chemistry, 2020, 44, 10102-10110.	2.8	26
139	Composite membranes based on macrocycle/polysiloxanes: preparation, characterization and electrochemical behaviour. Journal of Materials Chemistry, 1995, 5, 817-825.	6.7	25
140	Algae–silica systems as functional hybrid materials. Journal of Materials Chemistry, 2010, 20, 9362-9369.	6.7	25
141	Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. Journal of Materials Chemistry B, 2013, 1, 2911.	5.8	25
142	Recent Advances on Fibrous Clay-Based Nanocomposites. Advances in Polymer Science, 2014, , 39-86.	0.8	25
143	Synthesis and characterization of the new mixed oxide NbVO5. Materials Letters, 1989, 8, 132-136.	2.6	24
144	MVO5(M = Nb, Ta) mixed oxides: sol–gel synthesis, structural and thermal characterization and electrochemical Li+insertion. Journal of Materials Chemistry, 1996, 6, 1005-1011.	6.7	24

#	Article	IF	CITATIONS
145	Hybrid materials based on vanadium pentoxide intercalation complexes. Colloid and Polymer Science, 2001, 279, 990-1004.	2.1	24
146	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Đerived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	3.8	24
147	Electrochemical characterization of composite membranes based on crown-ethers intercalated into montmorillonite. Colloid and Polymer Science, 1994, 272, 712-720.	2.1	23
148	Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. Beilstein Journal of Nanotechnology, 2016, 7, 1772-1782.	2.8	23
149	Nanoarchitectures Based on Layered Titanosilicates Supported on Glass Fibers: Application to Hydrogen Storage. Langmuir, 2013, 29, 7449-7455.	3.5	22
150	Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications. Beilstein Journal of Nanotechnology, 2016, 7, 1971-1982.	2.8	22
151	Characterization, pillaring and catalytic properties of a saponite from VicÃilvaro, Madrid, Spain. Clay Minerals, 1997, 32, 41-54.	0.6	21
152	Intracrystalline reactivity of layered double hydroxides: carboxylate alkylations in dry media. New Journal of Chemistry, 2000, 24, 119-121.	2.8	21
153	Progress in Bionanocomposites: From green plastics to biomedical applications. Progress in Polymer Science, 2013, 38, 1391.	24.7	21
154	Smectite-chitosan-based electrodes in electrochemical detection of phenol and its derivatives. Applied Clay Science, 2016, 124-125, 62-68.	5.2	21
155	Proton conductivity in Al-montmorillonite pillared clays. Solid State Ionics, 1996, 85, 313-317.	2.7	20
156	Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes. Journal of Magnetism and Magnetic Materials, 2005, 294, e69-e72.	2.3	20
157	Amperometric Sensors Based on Mercaptopyridineâ^'Montmorillonite Intercalation Compounds. Chemistry of Materials, 2005, 17, 708-715.	6.7	20
158	Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 2007, 17, 4233.	6.7	20
159	Vibrational spectra of ammonium ions in crown-ether–NH+4-montmorillonite complexes. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 2225.	1.0	19
160	Bio-nanocomposites by Assembling of Gelatin and Layered Perovskite Mixed Oxides. Journal of Nanoscience and Nanotechnology, 2006, 6, 1602-1610.	0.9	19
161	Preparation and properties as positive electrodes of PANI–LiNi0.8Co0.2O2 nanocomposites. Journal of Materials Chemistry, 2008, 18, 3965.	6.7	19
162	Multisensor device based on Case-Based Reasoning (CBR) for monitoring nutrient solutions in fertigation. Sensors and Actuators B: Chemical, 2009, 135, 530-536.	7.8	19

#	Article	IF	CITATIONS
163	Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. Beilstein Journal of Nanotechnology, 2019, 10, 1303-1315.	2.8	19
164	51V and 93Nb high resolution NMR study of NbVO5. Journal of Materials Research, 1991, 6, 393-400.	2.6	18
165	Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose. Applied Clay Science, 2020, 189, 105538.	5.2	18
166	Interlayer adsorption of macrocyclic compounds (crown-ethers and cryptands) in 2:1 phyllosilicates: I. Isotherms and kinetics. Clay Minerals, 1986, 21, 1-7.	0.6	17
167	Fe-rich smectites from Gafsa (Tunisia): characterization and pillaring behaviour. Clay Minerals, 2002, 37, 517-529.	0.6	17
168	Case-based reasoning (CBR) for multicomponent analysis using sensor arrays: Application to water quality evaluation. Analyst, The, 2002, 127, 1580-1582.	3.5	17
169	Biomaterials from beer manufacture waste for bone growth scaffolds. Green Chemistry Letters and Reviews, 2011, 4, 229-233.	4.7	17
170	Fibrous Clay Mineral–Polymer Nanocomposites. Developments in Clay Science, 2013, 5, 721-741.	0.5	17
171	Laser microprobe mass spectrometry (LMMS) of intracrystalline crown ether and cryptand complexes in layer silicates. Journal of Inclusion Phenomena, 1988, 6, 107-118.	0.6	16
172	Characterization of cobalt nanowires by means of force microscopy. IEEE Transactions on Magnetics, 2000, 36, 2981-2983.	2.1	16
173	Hybrid materials based on lichen–polysiloxane matrices: application as electrochemical sensors. Journal of Materials Chemistry, 2002, 12, 3660-3664.	6.7	16
174	Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. Chemical Record, 2018, 18, 849-857.	5.8	16
175	Clay-Nanoarchitectures as Photocatalysts by <i>In Situ</i> Assembly of ZnO Nanoparticles and Clay Minerals. Journal of Nanoscience and Nanotechnology, 2018, 18, 223-233.	0.9	16
176	CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. Clays and Clay Minerals, 2019, 67, 44-58.	1.3	16
177	Photo-oxidation of water mediated by a clay-anchored Os catalyst. Journal of Molecular Catalysis, 1985, 33, 83-86.	1.2	15
178	29Si MAS-N.M.R. spectra of lamellar silicic acid H-magadiite and its trimethylsilyl derivative. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1986, 540, 227-233.	1.2	15
179	Organosilicic membranes doped with crown-ethers. Journal of Materials Chemistry, 1993, 3, 687-688.	6.7	15
180	Chitosan Based Films. Synthesis and Crystalline Properties of Nanocomposites with Amine Propyl Siloxane. International Journal of Polymeric Materials and Polymeric Biomaterials, 1997, 35, 61-70.	3.4	15

#	Article	IF	CITATIONS
181	Sepiolite-carbon nanocomposites doped with Pd as improving catalysts for hydrodechlorination processes. Applied Clay Science, 2018, 161, 132-138.	5.2	15
182	Theoretical and experimental investigation on the intercalation of metformin into layered clay minerals. Applied Clay Science, 2020, 186, 105418.	5.2	15
183	Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates. Journal of Materials Science, 2017, 52, 11269-11281.	3.7	15
184	Polymer-Clay Nanocomposites as Precursors of Nanostructured Carbon Materials for Electrochemical Devices: Templating Effect of Clays. Journal of Nanoscience and Nanotechnology, 2008, 8, 1741-1750.	0.9	15
185	Synthesis of 2,4-D ester herbicides. Green Chemistry, 1999, 1, 199-204.	9.0	14
186	Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. Journal of Solid State Chemistry, 2019, 270, 287-294.	2.9	14
187	Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. Applied Clay Science, 2020, 191, 105613.	5.2	14
188	Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. Current Nanoscience, 2009, 5, 506-513.	1.2	14
189	Surface characterization of pure and chemically modified minerals by laser microprobe mass spectrometry. Analytica Chimica Acta, 1987, 195, 331-336.	5.4	13
190	Intercalation of Methylene Blue into vanadium pentoxide gels. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4479.	1.7	13
191	Hybrid Organic-Inorganic Electrode-Membranes Based on Organo-Polysiloxane/Macrocycle Systems. Materials Research Society Symposia Proceedings, 1998, 519, 211.	0.1	13
192	<i>In situ</i> generation of 3D graphene-like networks from cellulose nanofibres in sintered ceramics. Nanoscale, 2018, 10, 10488-10497.	5.6	13
193	Editorial [Trends in Bio-Hybrid Nanostructured Materials Guest Editors: Eduardo Ruiz-Hitzky and Margarita Darder]. Current Nanoscience, 2006, 2, 153-153.	1.2	12
194	Design, development and characterization of a nanomagnetic system based on iron oxide nanoparticles encapsulated in PLLA-nanospheres. European Polymer Journal, 2015, 62, 145-154.	5.4	12
195	Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Frontiers in Chemistry, 2021, 9, 733105.	3.6	12
196	Selectivity of the Catalytic Rearrangement of 1,2-Glycols on Acidic Solids. Studies in Surface Science and Catalysis, 1988, 41, 211-219.	1.5	11
197	Beckmann Rearrangement Reactions on Acidic Solids. Studies in Surface Science and Catalysis, 1991, 59, 539-547.	1.5	11
198	TayNb1â^'yVO5 (0 <y<1) by="" electrochemical="" li+-insertion.<br="" method:="" mixed="" oxides="" sol–gel="" synthesized="">Catalysis Today, 2003, 78, 571-579.</y<1)>	4.4	11

#	Article	IF	CITATIONS
199	Preparation of an Li0.7Ni0.8Co0.2O2 Electrode Material From a New Li-Co-Ni Mixed-Citrate Precursor. European Journal of Inorganic Chemistry, 2005, 2005, 2698-2705.	2.0	11
200	PROGRESS IN BIONANOCOMPOSITE MATERIALS. Annual Review of Nano Research, 2009, , 149-189.	0.2	11
201	Responses of human cells to sepiolite interaction. Applied Clay Science, 2020, 194, 105655.	5.2	11
202	Intracrystalline Complexation by Crown Ethers and Cryptands in Clay Minerals. , 1986, , 179-189.		11
203	Intercalation of Oxyethylene Compounds (Crown-Ethers and PEO) into Molybdenum Disulfide. Journal of the Brazilian Chemical Society, 1996, 7, 193-197.	0.6	11
204	Green Carbon Nanostructures for Functional Composite Materials. International Journal of Molecular Sciences, 2022, 23, 1848.	4.1	11
205	Arylsulphonic Resins Based on Organic/Inorganic Macro-Molecular Systems. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 161, 459-469.	0.3	10
206	Elastic properties of natural single nanofibres. RSC Advances, 2014, 4, 11225.	3.6	10
207	Chapter 4. Nanoarchitectures Based on Clay Materials. RSC Nanoscience and Nanotechnology, 2012, , 87-111.	0.2	10
208	Laser microprobe mass analysis (LAMMA) of natural and organochlorosilane grafted sepiolite surfaces. Mikrochimica Acta, 1984, 84, 117-128.	5.0	9
209	Insertion of In(III) and Ga(III) into MPS3 (M = Mn, Cd) layered materials. Materials Research Bulletin, 1999, 34, 673-683.	5.2	9
210	One-Step Patterning of Hybrid Xerogel Materials for the Fabrication of Disposable Solid-State Light Emitters. ACS Applied Materials & Interfaces, 2012, 4, 5029-5037.	8.0	9
211	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9
212	Magnetic and electronic properties of bimagnetic materials comprising cobalt particles within hollow silica decorated with magnetite nanoparticles. Journal of Applied Physics, 2013, 114, .	2.5	9
213	Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Advances, 2017, 7, 42203-42210.	3.6	9
214	Intracrystalline Pinacol Rearrangement in Layer Silicates. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 161, 453-458.	0.3	8
215	TaxNb1â^'xVO5 (0 < x < 1) ternary oxides: Synthesis by sol-gel and structural characterization. Journal of Solid State Chemistry, 1992, 99, 258-266.	2.9	8
216	Microwave-Assisted Synthesis of MPS3 Materials (M = Mn, Cd) Using a Dewar-Ampoule Device. European Journal of Inorganic Chemistry, 2004, 2004, 949-952.	2.0	8

#	Article	IF	CITATIONS
217	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.6	8
218	Silacrown Ethers-Clay Intercalation Materials: Application in Potentiometric Sensors for Detection of Alkali-Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 608-616.	3.2	8
219	Silica-layered double hydroxide nanoarchitectured materials. Applied Clay Science, 2019, 171, 65-73.	5.2	8
220	Tailoring the properties of nanocellulose-sepiolite hybrid nanopapers by varying the nanocellulose type and clay content. Cellulose, 2022, 29, 5265-5287.	4.9	8
221	Genie Cristallin Dans Les Solides Organo-Mineraux. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 161, 433-452.	0.3	7
222	Chitosan-Clay Bio-Nanocomposites. Green Energy and Technology, 2012, , 365-391.	0.6	7
223	Zeolite–sepiolite nanoheterostructures. Journal of Nanostructure in Chemistry, 2014, 4, 1.	9.1	7
224	Zein-layered hydroxide biohybrids: strategies of synthesis and characterization. Materials, 2020, 13, 825.	2.9	7
225	Application of the Electrochemical Impedance Technique to Study of Pillared Clays. Chemistry of Materials, 1998, 10, 3379-3385.	6.7	6
226	Intercalation materials from azamacrocycles and layered sulfides: electrical and electrochemical behaviour. Journal of Materials Chemistry, 2004, 14, 824.	6.7	6
227	Organic-Inorganic Materials: From Intercalation Chemistry to Devices. , 2005, , 15-49.		6
228	Functional Nanocomposites Based on Fibrous Clays. RSC Smart Materials, 2016, , 1-53.	0.1	6
229	Interaction des amides N-substituées avec des acides siliciques lamellaires. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1984, 81, 625-628.	0.2	6
230	Efficient and Ecological Removal of Anionic Pollutants by Cationic Starch-Clay Bionanocomposites. Science of Advanced Materials, 2013, 5, 994-1005.	0.7	6
231	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	1.3	6
232	Microwave Assisted Blending-Intercalation of Ion-Conductor Polymers into Layered Silicates. Materials Research Society Symposia Proceedings, 1998, 519, 375.	0.1	5
233	"Bottle-around-a-ship―confinement of high loadings of Acridine Orange in new aluminophosphate crystalline materials. Journal of Materials Chemistry, 2006, 16, 1765-1771.	6.7	5
234	Silacrown modified xerogels as functional hybrid materials for carbon composite electrodes. Comptes Rendus Chimie, 2010, 13, 227-236.	0.5	5

#	Article	IF	CITATIONS
235	Gentamicin-Montmorillonite Intercalation Compounds as an Active Component of Hydroxypropylmethylcellulose Bionanocomposite Films with Antimicrobial Properties. Clays and Clay Minerals, 2021, 69, 576-588.	1.3	5
236	Gelatine-based bio-nanocomposites. , 2011, , 209-233.		4
237	Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair. Bio-Medical Materials and Engineering, 2013, 23, 405-421.	0.6	4
238	Modulation of Inorganic Matrices for Functional Nanoarchitectures Fabrication: The Simultaneous Effect of Moisture and Temperature in the Preparation of Metakaolin Based Geopolymers. Bulletin of the Chemical Society of Japan, 2018, 91, 1158-1167.	3.2	4
239	Inorganic Nanoarchitectures Based on Sepiolite. , 2016, , 87-100.		4
240	Gelation under dynamic conditions: A strategy for in vitro cell ordering. Journal of Materials Science: Materials in Medicine, 2006, 17, 795-802.	3.6	2
241	Electrical Properties of Oxyethylene Intercalated Compounds. NATO ASI Series Series B: Physics, 1993, , 397-400.	0.2	2
242	Lithium Intercalation in Ta _x Nb _{1-x} VO ₅ Mixed Oxides. Materials Science Forum, 1992, 91-93, 153-158.	0.3	1
243	Oxidation Mechanism in Intercalated Vanadium Pentoxide. Materials Science Forum, 1992, 91-93, 609-612.	0.3	1
244	Preface: (Applicative Trends in Nanoscience: Recent Patents on Nanotechnology). Recent Patents on Nanotechnology, 2014, 8, 1-1.	1.3	1
245	Interdiffusive Surfactant Procedure for the Preparation of Nanoarchitectured Porous Films: Application to the Growth of Titania Thin Films on Silicon Substrates. Langmuir, 2019, 35, 7169-7174.	3.5	1
246	Clay–Organic Interactions. , 2004, , .		1
247	Meet the Editorial Board. Recent Patents on Nanotechnology, 2015, 9, 1-1.	1.3	1
248	Characterization of Clay-Polyoxyethylene Based Membranes Using AC Impedance Spectroscopy. Key Engineering Materials, 1992, 61-62, 469-472.	0.4	0
249	Functionalizing Inorganic Solids: Towards Organic—Inorganic Nanostructured Materials for Intelligent and Bioinspired Systems. ChemInform, 2003, 34, no.	0.0	0
250	Preparation of an Li0.7Ni0.8Co0.2O2 Electrode Material from a New Li—Co—Ni Mixed-Citrate Precursor ChemInform, 2005, 36, no.	0.0	0
251	Materials Science in Madrid. Advanced Materials, 2011, 23, 5126-5129.	21.0	0
252	Bionanocomposites based on layered double hydroxides as drug delivery systems. , 2012, , .		0

#	Article	IF	CITATIONS
253	EDITORIAL [The Progress on the Recent Patents on Nanotechnology Contributions]. Recent Patents on Nanotechnology, 2012, 7, 1-1.	1.3	0
254	Intercalation and electrical behavior of Ta xMo1-xS2 (x > 0.5) layered mixed disulfides. Journal of the Brazilian Chemical Society, 2012, 23, 415-425.	0.6	0
255	Jose M. Serratosa (1924–2012)⋆. Applied Clay Science, 2013, 72, 211-212.	5.2	0
256	EDITORIAL (The Progress on the Recent Patents on Nanotechnology Contributions). Recent Patents on Nanotechnology, 2013, 7, 1-1.	1.3	0
257	Conducting Composites: Clay-Graphene Nanoplatelets Functional Conducting Composites (Adv. Funct.) Tj ETQq1	10,7843 14.9	14 rgBT /Ovi
258	Preface: General Considerations on the 2016 Volume of Recent Patents on Nanotechnology Journal. Recent Patents on Nanotechnology, 2017, 11, 2-2.	1.3	0
259	2018 Annual Report on Recent Patents on Nanotechnology. Recent Patents on Nanotechnology, 2019, 13, 2-2.	1.3	0
260	Improving the Impact Factor of Recent Patents on Nanotechnology. Recent Patents on Nanotechnology, 2020, 14, 2-2.	1.3	0
261	Preface (Recent Patents on Nanotechnology: Impact and Current Trends on Applied Knowledge). Recent Patents on Nanotechnology, 2015, 9, 2-2.	1.3	0
262	Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. Journal of Nanoscience and Nanotechnology, 2008, 8, 1741-50.	0.9	0