
Alicja Gackowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9280405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite. Environmental Science and Pollution Research, 2016, 23, 1886-1897.	2.7	30
2	Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation. Environmental Science and Pollution Research, 2018, 25, 16037-16049.	2.7	26
3	Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species. Open Chemistry, 2014, 12, 612-623.	1.0	20
4	Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species. Environmental Science and Pollution Research, 2017, 24, 8049-8061.	2.7	10
5	Effect of sodium hypochlorite on conversions of octyl-dimethyl- <i>para</i> -aminobenzoic acid. Desalination and Water Treatment, 2016, 57, 1429-1435.	1.0	8
6	Determination of environmental properties and toxicity of octyl-dimethyl-para-aminobenzoic acid and its degradation products. Journal of Hazardous Materials, 2021, 403, 123856.	6.5	8
7	Evaluation of Degradation Efficiency of 2'-Ethylhexyl 4-(Dimethylamino)Benzoate under the Influence of Oxidizing Agents. Journal of Ecological Engineering, 2018, 19, 236-241.	0.5	8
8	Experimental and theoretical studies on formation and degradation of chloro organic compounds. Chemosphere, 2006, 63, 165-170.	4.2	5
9	Effect of Activated Sludge on the Degradation of 2-Ethylhexyl 4-Methoxycinnamate and 2-Ethylhexyl 4-(Dimethylamino)Benzoate in Wastewater. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
10	The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification. Environmental Science and Pollution Research, 2019, 26, 28188-28201.	2.7	3
11	Effect of Parameters on Oxychlorination of <i>Tert</i> Butyl Ethers. Toxicology Mechanisms and Methods, 2008, 18, 497-501.	1.3	2
12	Determination of Linoleic Acid in Toothpaste by Gas Chromatography with Flame Ionization Detection. Analytical Sciences, 2008, 24, 759-762.	0.8	1
13	COMPARISON OF METHODS FOR ETHYLHEXYL 4-METHOXYCINNAMATE ACID ESTER OXIDATION IN WATER MEDIUM. Journal of Ecological Engineering, 2017, 18, 204-210.	0.5	1
14	Removal of 2-phenylbenzimidazole-5-sulfonic acid using heterogeneous photocatalysis. Acta Innovations, 2018, , 5-13.	0.4	0