Eugenio Carminati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9280315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 2012, 579, 173-192.	2.2	355
2	The role of slab detachment processes in the opening of the western–central Mediterranean basins: some geological and geophysical evidence. Earth and Planetary Science Letters, 1998, 160, 651-665.	4.4	320
3	Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth-Science Reviews, 2012, 112, 67-96.	9.1	280
4	Subduction kinematics and dynamic constraints. Earth-Science Reviews, 2007, 83, 125-175.	9.1	275
5	Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation. Engineering Geology, 2002, 66, 241-255.	6.3	130
6	Deep structure of the southern Apennines, Italy: Thin-skinned or thick-skinned?. Tectonics, 2005, 24, n/a-n/a.	2.8	122
7	Slab dip vs. lithosphere age: No direct function. Earth and Planetary Science Letters, 2005, 238, 298-310.	4.4	96
8	Apennines subduction-related subsidence of Venice (Italy). Geophysical Research Letters, 2003, 30, .	4.0	92
9	Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and differences. Bulletin of the Geological Society of America, 2011, 123, 468-484.	3.3	85
10	Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, 2011, 184, 160-171.	1.9	82
11	The two-stage opening of the western–central Mediterranean basins: a forward modeling test to a new evolutionary model. Earth and Planetary Science Letters, 1998, 160, 667-679.	4.4	81
12	Separating natural and anthropogenic vertical movements in fast subsiding areas: The Po Plain (N.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
13	Fault on–off versus coseismic fluids reaction. Geoscience Frontiers, 2014, 5, 767-780.	8.4	69
14	Slab Retreat and Active Shortening along the Central-Northern Apennines. Frontiers in Earth Sciences, 2007, , 471-487.	0.1	67
15	The westward drift of the lithosphere: A rotational drag?. Bulletin of the Geological Society of America, 2006, 118, 199-209.	3.3	64

16Upper mantle flow in the western Mediterranean. Earth and Planetary Science Letters, 2007, 257,
200-214.4.464

17	Rift asymmetry and continental uplift. Tectonics, 2003, 22, n/a-n/a.	2.8	61
18	Compactionâ€induced stress variations with depth in an active anticline: Northern Apennines, Italy. Journal of Geophysical Research, 2010, 115, .	3.3	61

#	Article	IF	CITATIONS
19	Tectonics, magmatism and geodynamics of Italy: What we know and what we imagine. Journal of the Virtual Explorer, 0, 36, .	0.0	58
20	Normal fault earthquakes or graviquakes. Scientific Reports, 2015, 5, 12110.	3.3	56
21	On the geodynamics of the northern Adriatic plate. Rendiconti Lincei, 2010, 21, 253-279.	2.2	55
22	Influence of glacial cycles and tectonics on natural subsidence in the Po Plain (Northern Italy): Insights from14C ages. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	49
23	Subsidence history from a backstripping analysis of the Permoâ€Mesozoic succession of the Central Southern Alps (Northern Italy). Basin Research, 2010, 22, 952-975.	2.7	43
24	Crustal-scale fluid circulation and co-seismic shallow comb-veining along the longest normal fault of the central Apennines, Italy. Earth and Planetary Science Letters, 2018, 498, 152-168.	4.4	43
25	Tectonic control on the architecture of a Miocene carbonate ramp in the Central Apennines (Italy): Insights from facies and backstripping analyses. Sedimentary Geology, 2007, 198, 233-253.	2.1	42
26	Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth and Planetary Science Letters, 2016, 450, 292-305.	4.4	42
27	Control of differential compaction on the geometry of sediments onlapping paleoescarpments: Insights from field geology (Central Apennines, Italy) and numerical modeling. Geology, 2005, 33, 353.	4.4	41
28	Plio-Quaternary vertical motion of the Northern Apennines: Insights from dynamic modeling. Tectonics, 1999, 18, 703-718.	2.8	40
29	Subduction-related intermediate-depth and deep seismicity in Italy: insights from thermal and rheological modelling. Physics of the Earth and Planetary Interiors, 2005, 149, 65-79.	1.9	39
30	Slab bending, synâ€subduction normal faulting, and outâ€ofâ€sequence thrusting in the Central Apennines. Tectonics, 2014, 33, 530-551.	2.8	38
31	Fault on-off versus strain rate and earthquakes energy. Geoscience Frontiers, 2015, 6, 265-276.	8.4	38
32	Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics, 2017, 712-713, 156-169.	2.2	37
33	3D Discrete Fracture Network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: Multiscale approach using field data and UAV imagery. Marine and Petroleum Geology, 2021, 126, 104902.	3.3	37
34	Architecture and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust, Central) Tj ETQq0 0 0 rgBT /Ov Structural Geology, 2020, 136, 104059.	erlock 10 ⁻ 2.3	Tf 50 147 Td 36
35	Thermal and tectonic evolution of the southern Alps (northern Italy) rifting: Coupled organic matter maturity analysis and thermokinematic modeling. AAPG Bulletin, 2010, 94, 369-397.	1.5	34

Graviquakes in Italy. Tectonophysics, 2015, 656, 202-214.

2.2 34

Eugenio Carminati

#	Article	IF	CITATIONS
37	Reverse migration of seismicity on thrusts and normal faults. Earth-Science Reviews, 2004, 65, 195-222.	9.1	33
38	Thermal evolution of the Kuh-e-Asmari and Sim anticlines in the Zagros fold-and-thrust belt: Implications for hydrocarbon generation. Marine and Petroleum Geology, 2014, 57, 1-13.	3.3	33
39	Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators. Marine and Petroleum Geology, 2017, 84, 18-33.	3.3	33
40	Control of folding and faulting on fracturing in the Zagros (Iran): The Kuh-e-Sarbalesh anticline. Journal of Asian Earth Sciences, 2014, 79, 400-414.	2.3	32
41	Microstructural evidence for seismic and aseismic slips along clayâ€bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 2017, 122, 3895-3915.	3.4	32
42	Thrust kinematics and internal deformation in basement-involved fold and thrust belts: The eastern Orobic Alps case (Central Southern Alps, northern Italy). Tectonics, 1997, 16, 259-271.	2.8	31
43	Investigating fault reactivation during multiple tectonic inversions through mechanical and numerical modeling: An application to the Central-Northern Apennines of Italy. Journal of Structural Geology, 2014, 67, 167-185.	2.3	31
44	The Zagros fold-and-thrust belt in the Fars province (Iran): II. Thermal evolution. Marine and Petroleum Geology, 2018, 93, 376-390.	3.3	31
45	Décollement depth versus accretionary prism dimension in the Apennines and the Barbados. Tectonics, 2003, 22, n/a-n/a.	2.8	30
46	Mesozoic Syn- and Postrifting Evolution of the Central Apennines, Italy: The Role of Triassic Evaporites. Journal of Geology, 2013, 121, 327-354.	1.4	30
47	Not so simple "simply-folded Zagros― The role of pre-collisional extensional faulting, salt tectonics and multi-stage thrusting in the Sarvestan transfer zone (Fars, Iran). Tectonophysics, 2016, 671, 235-248.	2.2	30
48	Zagros fold and thrust belt in the Fars province (Iran) I: Control of thickness/rheology of sediments and pre-thrusting tectonics on structural style and shortening. Marine and Petroleum Geology, 2018, 91, 211-224.	3.3	30
49	Control of Cambrian evaporites on fracturing in fault-related anticlines in the Zagros fold-and-thrust belt. International Journal of Earth Sciences, 2013, 102, 1237-1255.	1.8	29
50	Origin of Triassic magmatism of the Southern Alps (Italy): Constraints from geochemistry and Sr-Nd-Pb isotopic ratios. Gondwana Research, 2019, 75, 218-238.	6.0	29
51	Volume unbalance on the 2016 Amatrice - Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism. Scientific Reports, 2019, 9, 4250.	3.3	29
52	Dynamic modelling of stress accumulation in central Italy. Geophysical Research Letters, 1999, 26, 1945-1948.	4.0	28
53	Development of an Intrawedge Tectonic Mélange by Outâ€ofâ€Sequence Thrusting, Buttressing, and Intraformational Rheological Contrast, Mt. Massico Ridge, Apennines, Italy. Tectonics, 2019, 38, 1223-1249.	2.8	25
54	Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region. Marine and Petroleum Geology, 2013, 42, 160-181.	3.3	24

EUGENIO CARMINATI

#	Article	IF	CITATIONS
55	Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere. Geoscience Frontiers, 2015, 6, 401-418.	8.4	23
56	Phantom plumes in Europe and the circum-Mediterranean region. , 2007, , 723-745.		22
57	Cenozoic uplift of Europe. Tectonics, 2009, 28, .	2.8	22
58	Two―and threeâ€dimensional numerical simulations of the stress field at the thrust front of the Northern Apennines, Italy. Journal of Geophysical Research, 2010, 115, .	3.3	21
59	Phyllosilicate injection along extensional carbonate-hosted faults and implications for co-seismic slip propagation: Case studies from the central Apennines, Italy. Journal of Structural Geology, 2016, 93, 29-50.	2.3	21
60	State of stress in slabs as a function of largeâ€scale plate kinematics. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	20
61	The effects of brittle-plastic transitions in basement-involved foreland belts: the Central Southern Alps case (N Italy). Tectonophysics, 1997, 280, 107-123.	2.2	19
62	Differential compaction and early rock fracturing in high-relief carbonate platforms: numerical modelling of a Triassic case study (Esino Limestone, Central Southern Alps, Italy). Basin Research, 2012, 24, 598-614.	2.7	19
63	Ultra-thin clay layers facilitate seismic slip in carbonate faults. Scientific Reports, 2017, 7, 664.	3.3	18
64	Tectonically controlled carbonate-seated maar-diatreme volcanoes: The case of the Volsci Volcanic Field, central Italy. Journal of Geodynamics, 2020, 139, 101763.	1.6	18
65	Tectonic Evolution of the Northern Oman Mountains, Part of the Strait of Hormuz Syntaxis: New Structural and Paleothermal Analyses and Uâ€Pb Dating of Synkinematic Calcite. Tectonics, 2020, 39, e2019TC005936.	2.8	18
66	Complex geometry and kinematics of subsidiary faults within a carbonate-hosted relay ramp. Journal of Structural Geology, 2020, 130, 103915.	2.3	17
67	Dynamic modelling of stress accumulation in Central Italy: roleÂofÂstructural heterogeneities and rheology. Geophysical Journal International, 2001, 144, 373-390.	2.4	16
68	Tectonic control on the petrophysical properties of foredeep sandstone in the Central Apennines, Italy. Journal of Geophysical Research: Solid Earth, 2014, 119, 9077-9094.	3.4	16
69	Active Foldâ€Thrust Belt to Foreland Transition in Northern Adria, Italy, Tracked by Seismic Reflection Profiles and GPS Offshore Data. Tectonics, 2020, 39, e2020TC006425.	2.8	16
70	Contribution of numeric dynamic modelling to the understanding of the seismotectonic regime of the northern Apennines. Tectonophysics, 1999, 315, 15-30.	2.2	15
71	Incremental strain analysis using two generations of syntectonic coaxial fibres: an example from the Monte Marguareis Brian§onnais Cover nappe (Ligurian Alps, Italy). Journal of Structural Geology, 2001, 23, 1441-1456.	2.3	15
72	Disproving the Presence of Paleozoicâ€Triassic Metamorphic Rocks on the Island of Zannone (Central) Tj ETQq0 C) 0 rgBT /0 2.8	Dverlock 10 7 15

2020, 39, e2020TC006296.

Eugenio Carminati

#	Article	IF	CITATIONS
73	Thermal maturity of the Hawasina units and origin of the Batinah Mélange (Oman Mountains): Insights from clay minerals. Marine and Petroleum Geology, 2021, 133, 105316.	3.3	15
74	Slab–mantle flow interaction: influence on subduction dynamics and duration. Terra Nova, 2014, 26, 265-272.	2.1	14
75	The Central Southern Alps (N. Italy) paleoseismic zone: a comparison between field observations and predictions of fault mechanics. Tectonophysics, 2005, 401, 179-197.	2.2	13
76	A study on the effects of seismicity on subsidence in foreland basins: An application to the Venice area. Global and Planetary Change, 2007, 55, 237-250.	3.5	13
77	Lithological and structural control on fracture frequency distribution within a carbonate-hosted relay ramp. Journal of Structural Geology, 2020, 137, 104085.	2.3	10
78	Constraining the Passive to Active Margin Tectonics of the Internal Central Apennines: Insights from Biostratigraphy, Structural, and Seismic Analysis. Geosciences (Switzerland), 2021, 11, 160.	2.2	10
79	U-Pb age of the 2016 Amatrice earthquake causative fault (Mt. Gorzano, Italy) and paleo-fluid circulation during seismic cycles inferred from inter- and co-seismic calcite. Tectonophysics, 2021, 819, 229076.	2.2	10
80	Frictional controls on the seismogenic zone: Insights from the Apenninic basement, Central Italy. Earth and Planetary Science Letters, 2022, 583, 117444.	4.4	10
81	Neglected basement ductile deformation in balanced-section restoration: An example from the Central Southern Alps (Northern Italy). Tectonophysics, 2009, 463, 161-166.	2.2	9
82	Lithological control on multiple surface ruptures during the 2016–2017 Amatrice-Norcia seismic sequence. Journal of Geodynamics, 2020, 134, 101676.	1.6	9
83	The role of trapped fluids during the development and deformation of a carbonate/shale intra-wedge tectonic mélange (Mt. Massico, Southern Apennines, Italy). Journal of Structural Geology, 2020, 138, 104086.	2.3	9
84	North Atlantic geoid high, volcanism and glaciations. Geophysical Research Letters, 2010, 37, .	4.0	8
85	Brittle-ductile transition depth versus convergence rate in shallow crustal thrust faults: Considerations on seismogenic volume and impact on seismicity. Physics of the Earth and Planetary Interiors, 2018, 284, 72-81.	1.9	8
86	Three-dimensional numerical simulation of the interseismic and coseismic phases associated with the 6 April 2009, Mw 6.3ÂL'Aquila earthquake (Central Italy). Tectonophysics, 2021, 798, 228685.	2.2	8
87	Numerical analysis of interseismic, coseismic and post-seismic phases for normal and reverse faulting earthquakes in Italy. Geophysical Journal International, 2021, 225, 627-645.	2.4	8
88	The role of post-orogenic normal faulting in hydrocarbon migration in fold-and-thrust belts: Insights from the central Apennines, Italy. Marine and Petroleum Geology, 2022, 136, 105429.	3.3	8
89	Chemical interaction driven by deep fluids in the damage zone of a seismogenic carbonate fault. Journal of Structural Geology, 2022, 161, 104668.	2.3	8
90	The Decollement Depth of Active Thrust Faults in Italy: Implications on Potential Earthquake Magnitude. Tectonics, 2019, 38, 3990-4009.	2.8	7

EUGENIO CARMINATI

0

#	Article	IF	CITATIONS
91	The Segmented Campo Felice Normal Faults: Seismic Potential Appraisal by Application of Empirical Relationships Between Rupture Length and Earthquake Magnitude in the Central Apennines, Italy. Tectonics, 2021, 40, e2020TC006465.	2.8	7
92	Segmentation of the Apenninic Margin of the Tyrrhenian Backâ€Arc Basin Forced by the Subduction of an Inherited Transform System. Tectonics, 2021, 40, e2021TC006770.	2.8	7
93	Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data. Tectonophysics, 2016, 667, 48-62.	2.2	6
94	Tyrrhenian Sea. , 2012, , 472-485.		5
95	Triple folded surface morphology of Neoproterozoic rocks (Jabal Akhdar Dome, Oman Mountains) – Insights into buttressing effects and regional tectonics. Journal of Asian Earth Sciences, 2021, 221, 104942.	2.3	3
96	Estimation of the maximum earthquakes magnitude based on potential brittle volume and strain rate: The Italy test case. Tectonophysics, 2022, 836, 229405.	2.2	3
97	Pre-folding fracturing in a foredeep environment: insights from the Carseolani Mountains (central) Tj ETQq1 1 0.7	784314 rg 1.5	BT ₂ /Overloc
98	The Geology of the Periadriatic basin and of the Adriatic Sea. Marine and Petroleum Geology, 2013, 42, 1-3.	3.3	1
99	Mediterranean Tectonics. , 2021, , 408-419.		0

100 Igneous activity in central-southern Italy: Is the subduction paradigm still valid?. , 2022, , .