Victor J Lieffers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An analysis of sucker regeneration of trembling aspen. Canadian Journal of Forest Research, 2003, 33, 1169-1179.	1.7	207
2	Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Canadian Journal of Forest Research, 2004, 34, 1379-1390.	1.7	170
3	Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees - Structure and Function, 2003, 17, 471-476.	1.9	136
4	Ecology of and control strategies for <i>Calamagrostiscanadensis</i> in boreal forest sites. Canadian Journal of Forest Research, 1993, 23, 2070-2077.	1.7	132
5	Are mixtures of aspen and white spruce more productive than single species stands?. Forestry Chronicle, 1999, 75, 505-513.	0.6	130
6	Growth of <i> Populus tremuloides</i> in association with <i>Calamagrostis canadensis</i> . Canadian Journal of Forest Research, 1998, 28, 396-401.	1.7	121
7	Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta's oil sands region. Biological Conservation, 2015, 184, 127-135.	4.1	110
8	Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above-ground disturbance. Journal of Ecology, 2002, 90, 658-665.	4.0	106
9	Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate. Journal of Biogeography, 2010, 37, 68-76.	3.0	104
10	Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees - Structure and Function, 2012, 26, 653-661.	1.9	104
11	Effects of leaf litter on the growth of boreal feather mosses: Implication for forest floor development. Journal of Vegetation Science, 2008, 19, 253-260.	2.2	100
12	Age structure and growth of understory white spruce under aspen. Canadian Journal of Forest Research, 1996, 26, 1002-1007.	1.7	90
13	Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiology, 2002, 22, 725-732.	3.1	88
14	MIXLIGHT: a flexible light transmission model for mixed-species forest stands. Agricultural and Forest Meteorology, 2000, 102, 235-252.	4.8	84
15	Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Annals of Forest Science, 2007, 64, 477-490.	2.0	84
16	Naturally Saline Boreal Communities as Models for Reclamation of Saline Oil Sand Tailings. Restoration Ecology, 2005, 13, 667-677.	2.9	82
17	The impact of <i>Calamagrostiscanadensis</i> on soil thermal regimes after logging in northern Alberta. Canadian Journal of Forest Research, 1991, 21, 387-394.	1.7	71
18	The influence of partial harvesting and forest floor disturbance on nutrient availability and understory vegetation in boreal mixedwoods. Canadian Journal of Forest Research, 2003, 33, 1180-1188.	1.7	69

#	Article	IF	CITATIONS
19	Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. Forest Ecology and Management, 2008, 256, 1692-1703.	3.2	69
20	Effects of shelterwood and site preparation on microclimate and establishment of white spruce seedlings in a boreal mixedwood forest. Forestry Chronicle, 1999, 75, 837-844.	0.6	68
21	The coarseâ€root system of mature Populus tremuloides in declining stands in Alberta, Canada. Journal of Vegetation Science, 2001, 12, 355-360.	2.2	67
22	Measure of simultaneous tree sways and estimation of crown interactions among a group of trees. Trees - Structure and Function, 2001, 15, 83-90.	1.9	65
23	Light dynamics and free-to-grow standards in aspen-dominated mixedwood forests. Forestry Chronicle, 2002, 78, 137-145.	0.6	65
24	Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytologist, 2013, 197, 586-594.	7.3	65
25	A comparison of growth and physiology in <i>Picea glauca</i> and <i>Populus tremuloides</i> at different soil temperatures. Canadian Journal of Forest Research, 2001, 31, 1922-1929.	1.7	64
26	Productivity of aspen stands with and without a spruce understory in Alberta's boreal mixedwood forests. Forestry Chronicle, 2001, 77, 351-356.	0.6	62
27	Preventing crown collisions increases the crown cover and leaf area of maturing lodgepole pine. Journal of Ecology, 2006, 94, 681-686.	4.0	62
28	Reducing stem bending increases the height growth of tall pines. Journal of Experimental Botany, 2006, 57, 3175-3182.	4.8	62
29	Carbohydrate transfer through root grafts to support shaded trees. Tree Physiology, 2006, 26, 1019-1023.	3.1	62
30	Signals controlling root suckering and adventitious shoot formation in aspen (Populus) Tj ETQq0 0 0 rgBT /Over	ock 10 Tf	50,302 Td (tr
31	Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agricultural and Forest Meteorology, 2006, 138, 104-119.	4.8	59
32	Stand structure governs the crown collisions of lodgepole pine. Canadian Journal of Forest Research, 2003, 33, 1238-1244.	1.7	57
33	Root biomass of regenerating aspen (<i>Populus tremuloides</i>) stands of different densities in Alberta. Canadian Journal of Forest Research, 2001, 31, 1012-1018.	1.7	54
34	Hydraulic acclimation to shading in boreal conifers of varying shade tolerance. Plant, Cell and Environment, 2010, 33, 382-393.	5.7	52
35	White tree rings formed in trembling aspen saplings following experimental defoliation. Canadian Journal of Forest Research, 2002, 32, 1929-1934.	1.7	51
36	Photosynthesis, water relations, and foliar nitrogen of Piceamariana and Larixlaricina from drained	1.7	50

and undrained peatlands. Canadian Journal of Forest Research, 1990, 20, 995-1000.

#	Article	IF	CITATIONS
37	Wind speed and crown class influence the height–diameter relationship of lodgepole pine: Nonlinear mixed effects modeling. Forest Ecology and Management, 2008, 256, 570-577.	3.2	49
38	Ecology and management of natural regeneration of white spruce in the boreal forest. Environmental Reviews, 2011, 19, 461-478.	4.5	49
39	Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry, 2009, 82, 163-173.	2.3	47
40	Partitioning of carbon allocation to reserves or growth determines future performance of aspen seedlings. Forest Ecology and Management, 2012, 275, 43-51.	3.2	47
41	Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 2014, 11, 2793-2808.	3.3	46
42	Stem hydraulic properties and growth in lodgepole pine stands following thinning and sway treatment. Canadian Journal of Forest Research, 2003, 33, 1295-1303.	1.7	45
43	A comparison of growth and physiology in <i>Picea glauca</i> and <i>Populus tremuloides</i> at different soil temperatures. Canadian Journal of Forest Research, 2001, 31, 1922-1929.	1.7	45
44	Soil nutrition and temperature as drivers of root suckering in trembling aspen. Canadian Journal of Forest Research, 2002, 32, 1685-1691.	1.7	43
45	Response ofPopulus tremuloides,Populus balsamifera,Betula papyriferaandPicea glaucaSeedlings to Low Soil Temperature and Water-logged Soil Conditions. Scandinavian Journal of Forest Research, 2003, 18, 391-400.	1.4	42
46	Inequality of Size and Size Increment in Pinus banksiana in Relation to Stand Dynamics and Annual Growth Rate. Annals of Botany, 2008, 101, 561-571.	2.9	41
47	The Impact of Phloem Nutrients on Overwintering Mountain Pine Beetles and Their Fungal Symbionts. Environmental Entomology, 2012, 41, 478-486.	1.4	41
48	Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta. Canadian Journal of Forest Research, 2006, 36, 2104-2111.	1.7	40
49	Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak. , 2011, 21, 150-162.		40
50	The effect of fire severity and salvage logging traffic on regeneration and early growth of aspen suckers in north-central Alberta. Forestry Chronicle, 2004, 80, 251-256.	0.6	39
51	Growth-climate relationships vary with height along the stem in lodgepole pine. Tree Physiology, 2010, 30, 335-345.	3.1	39
52	Elevated mortality of residual trees following structural retention harvesting in boreal mixedwoods. Forestry Chronicle, 2008, 84, 70-75.	0.6	38
53	Divergent Pathways of Successional Recovery for In Situ Oil Sands Exploration Drilling Pads on Wooded Moderateâ€Rich Fens in Alberta, Canada. Restoration Ecology, 2014, 22, 657-667.	2.9	38
54	Is long-lived foliage in Picea mariana an adaptation to nutrient-poor conditions?. Oecologia, 1992, 91, 184-191.	2.0	37

#	Article	IF	CITATIONS
55	Droughtâ€induced xylem pit membrane damage in aspen and balsam poplar. Plant, Cell and Environment, 2016, 39, 2210-2220.	5.7	37
56	Photosynthetic strategies of summergreen and evergreen understory herbs of the boreal mixedwood forest. Oecologia, 1997, 112, 173-178.	2.0	36
5 7	Effect of stock type characteristics and time of planting on field performance of aspen (Populus) Tj ETQq1 1 0.7	784314 rgl 1.7	3T /Qverlock
58	Reduction in branch sapwood hydraulic permeability as a factor limiting survival of lower branches of lodgepole pine. Canadian Journal of Forest Research, 2000, 30, 1088-1095.	1.7	35
59	Measuring and modelling the crown and light transmission characteristics of juvenile aspen. Canadian Journal of Forest Research, 2001, 31, 1930-1939.	1.7	35
60	Factors affecting white spruce and aspen survival after partial harvest. Journal of Applied Ecology, 2012, 49, 145-154.	4.0	35
61	The periodic motion of lodgepole pine trees as affected by collisions with neighbors. Trees - Structure and Function, 2008, 22, 475-482.	1.9	34
62	Effects of soil temperature and time of decapitation on sucker initiation of intact <i>Populus tremuloides</i> root systems. Scandinavian Journal of Forest Research, 2006, 21, 299-305.	1.4	33
63	Diurnal variation and interrelations of ecophysiological parameters in three peatland woody species under different weather and soil moisture conditions. Oecologia, 1991, 88, 317-324.	2.0	32
64	Seed tree density, variable retention, and stand composition influence recruitment of white spruce in boreal mixedwood forests. Canadian Journal of Forest Research, 2010, 40, 1821-1832.	1.7	32
65	Regeneration of Populus nine years after variable retention harvest in boreal mixedwood forests. Forest Ecology and Management, 2010, 259, 383-389.	3.2	32
66	Dispersal of white spruce seed in mature aspen stands. Canadian Journal of Botany, 1998, 76, 181-188.	1.1	32
67	Patterns of inter-annual variation in the size asymmetry of growth in Pinus banksiana. Oecologia, 2010, 163, 737-745.	2.0	31
68	Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands. Tree Physiology, 2003, 23, 833-840.	3.1	30
69	Growth and crown efficiency of height repressed lodgepole pine; are suppressed trees more efficient?. Trees - Structure and Function, 2004, 18, 390.	1.9	30
70	Effects of feathermoss removal, thinning and fertilization on lodgepole pine growth, soil microclimate and stand nitrogen dynamics. Forest Ecology and Management, 2007, 240, 79-86.	3.2	30
71	Forest regeneration standards: are they limiting management options for Alberta's boreal mixedwoods?. Forestry Chronicle, 2008, 84, 76-82.	0.6	30
72	Root biomass of regenerating aspen (<i>Populus tremuloides</i>) stands of different densities in Alberta. Canadian Journal of Forest Research, 2001, 31, 1012-1018.	1.7	30

#	Article	IF	CITATIONS
73	A unified nomenclature for quantification and description of water conducting properties of sapwood xylem based on Darcy's law. Tree Physiology, 2005, 25, 993-1000.	3.1	29
74	Regression equations for estimating single tree biomass of trembling aspen: Assessing their applicability to more than one population. Forest Ecology and Management, 1985, 11, 283-295.	3.2	28
75	Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature. Physiologia Plantarum, 2004, 122, 79-85.	5.2	28
76	Wounding of aspen roots promotes suckering. Canadian Journal of Botany, 2004, 82, 310-315.	1.1	27
77	Effects of repeated fertilization on needle longevity, foliar nutrition, effective leaf area index, and growth characteristics of lodgepole pine in interior British Columbia, Canada. Canadian Journal of Forest Research, 2005, 35, 440-451.	1.7	27
78	Ectomycorrhizal community responses to intensive forest management: thinning alters impacts of fertilization. Plant and Soil, 2012, 360, 333-347.	3.7	27
79	Defoliation constrains xylem and phloem functionality. Tree Physiology, 2019, 39, 1099-1108.	3.1	27
80	Growth response and sapwood hydraulic properties of young lodgepole pine following repeated fertilization. Tree Physiology, 2004, 24, 1099-1108.	3.1	26
81	Spatially explicit modeling of PAR transmission and growth of Picea glauca and Abies balsamea in the boreal forests of Alberta and Quebec. Canadian Journal of Forest Research, 2005, 35, 1-12.	1.7	26
82	The effect of temperature on mechanical properties of standing lodgepole pine trees. Trees - Structure and Function, 2000, 14, 424-428.	1.9	24
83	Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine. Canadian Journal of Botany, 2005, 83, 983-988.	1.1	24
84	Influences of climate on the radial growth of lodgepole pine in Alberta. Botany, 2008, 86, 167-178.	1.0	24
85	Differences in initial root development and soil conditions affect establishment of trembling aspen and balsam poplar seedlings. Botany, 2010, 88, 275-285.	1.0	24
86	Re-establishment of hummock topography promotes tree regeneration on highly disturbed moderate-rich fens. Journal of Environmental Management, 2017, 197, 258-264.	7.8	24
87	Competition between <i>Calamagrostiscanadensis</i> and <i>Epilobiumangustifolium</i> under different soil temperature and nutrient regimes. Canadian Journal of Forest Research, 1994, 24, 2244-2250.	1.7	23
88	Carbon isotope discrimination and water stress in trembling aspen following variable retention harvesting. Tree Physiology, 2007, 27, 1065-1071.	3.1	23
89	Effects of overstory retention and site preparation on growth of planted white spruce seedlings in deciduous and coniferous dominated boreal plains mixedwoods. Forest Ecology and Management, 2008, 255, 3744-3749.	3.2	23
90	Seedling growth and water use of boreal conifers across different temperatures and near-flooded soil conditions. Canadian Journal of Forest Research, 2011, 41, 2292-2300.	1.7	23

#	Article	IF	CITATIONS
91	Viability of forest floor and canopy seed banks in <i>Pinus contorta</i> var. <i>latifolia</i> (Pinaceae) forests after a mountain pine beetle outbreak. American Journal of Botany, 2011, 98, 630-637.	1.7	23
92	Root carbohydrates and aspen regeneration in relation to season of harvest and machine traffic. Forest Ecology and Management, 2008, 255, 68-74.	3.2	22
93	Growth of Typha latifolia in boreal forest habitats, as measured by double sampling. Aquatic Botany, 1983, 15, 335-348.	1.6	21
94	First-year growth response of cold-stored, nursery-grown aspen planting stock. New Forests, 2007, 33, 281-295.	1.7	21
95	Dendrochronological reconstruction of jack pine snag and downed log dynamics in Saskatchewan and Manitoba, Canada. Forest Ecology and Management, 2008, 255, 1262-1270.	3.2	21
96	Anaerobic and aerobic CO2 efflux rates from boreal forest conifer roots at low temperatures. Canadian Journal of Forest Research, 1993, 23, 767-771.	1.7	19
97	Sapwood hydraulic recovery following thinning in lodgepole pine. Annals of Forest Science, 2006, 63, 329-338.	2.0	19
98	The effect of roots and litter of Calamagrostis canadensis on root sucker regeneration of Populus tremuloides. Forestry, 2007, 80, 481-488.	2.3	19
99	Fungal colonization of aspen roots following mechanical site preparation. Canadian Journal of Forest Research, 2003, 33, 2372-2379.	1.7	18
100	Propagating trembling aspen from root cuttings: impact of storage length and phenological period of root donor plants. New Forests, 2010, 39, 169-182.	1.7	18
101	Seasonal changes in shoot regrowth potential in Calamagrostis canadensis. Oecologia, 1991, 85, 596-602.	2.0	17
102	The relationship between seasonal changes in rhizome carbohydrate reserves and recovery following disturbance in Calamagrostis canadensis. Canadian Journal of Botany, 1991, 69, 641-646.	1.1	17
103	Seasonal changes in carbohydrate storage and regrowth in rhizomes and stems of four boreal forest shrubs: Applications in <i>picea glauca</i> understorey regeneration. Scandinavian Journal of Forest Research, 1997, 12, 27-32.	1.4	17
104	Effects of timing of cleaning and residual density on regeneration of juvenile aspen stands. Forest Ecology and Management, 2006, 232, 198-204.	3.2	17
105	Title is missing!. New Forests, 2003, 25, 49-66.	1.7	16
106	Natural regeneration of white spruce in aspen-dominated boreal mixedwoods following harvesting. Canadian Journal of Forest Research, 2010, 40, 585-594.	1.7	15
107	Regeneration of White Spruce Under Aspen Canopies: Seeding, Planting, and Site Preparation. Western Journal of Applied Forestry, 2000, 15, 177-182.	0.5	14
108	Modeling crown volume of lodgepole pine based upon the uniform stress theory. Forest Ecology and Management, 2007, 251, 174-181.	3.2	14

#	Article	IF	CITATIONS
109	Nitrate stimulates root suckering in trembling aspen (Populus tremuloides). Canadian Journal of Forest Research, 2010, 40, 1962-1969.	1.7	14
110	Seasonal growth of black spruce and tamarack roots in an Alberta peatland. Canadian Journal of Botany, 1993, 71, 359-360.	1.1	13
111	Nitrogen-15 Uptake byPinus contortaSeedlings in Relation to Phenological Stage and Season. Scandinavian Journal of Forest Research, 2004, 19, 329-338.	1.4	13
112	Impact of chipping residues and its leachate on the initiation and growth of aspen root suckers. Canadian Journal of Soil Science, 2007, 87, 361-367.	1.2	13
113	Habitat heterogeneity stimulates regeneration of bryophytes and vascular plants on disturbed minerotrophic peatlands. Canadian Journal of Forest Research, 2019, 49, 281-295.	1.7	13
114	Utilizing pioneer species as a hydrological nurse crop to lower water table for reforestation of poorly drained boreal sites. Annals of Forest Science, 2003, 60, 741-748.	2.0	13
115	Linking juvenile white spruce density, dispersion, stocking, and mortality to future yield. Canadian Journal of Forest Research, 2006, 36, 3173-3182.	1.7	12
116	Le gel de printemps et la pourriture fongique sont impliqués dans la suppression de la repousse des trembles rejetant après un nettoiement partiel dans des peuplements juvéniles. Annals of Forest Science, 2009, 66, 805-805.	2.0	12
117	Predicting natural regeneration of white spruce in boreal mixedwood understories. Forestry Chronicle, 2001, 77, 1006-1013.	0.6	11
118	Linking juvenile growth of white spruce with site index. Forestry Chronicle, 2006, 82, 819-824.	0.6	11
119	A fifty-year reconstruction of annual changes in the spatial distribution of Pinus banksiana stands: does pattern fit competition theory?. Plant Ecology, 2008, 199, 137-152.	1.6	11
120	Snow damage in lodgepole pine stands brought into thinning and fertilization regimes. Forest Ecology and Management, 2011, 261, 2096-2104.	3.2	11
121	Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands. Oecologia, 2016, 181, 733-747.	2.0	11
122	Effects of Corylus cornuta stem density on root suckering and rooting depth of Populus tremuloidesThis article is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1041-1045.	1.1	10
123	Regeneration of aspen following partial and strip understory protection harvest in boreal mixedwood forests. Forestry Chronicle, 2009, 85, 631-638.	0.6	10
124	The persistence and function of living roots on lodgepole pine snags and stumps grafted to living trees. Annals of Forest Science, 2007, 64, 31-36.	2.0	9
125	Modelling the change in aspen species composition in boreal mixedwoods. Forestry, 2008, 81, 575-586.	2.3	9
126	Suckering response of aspen to traffic-induced-root wounding and the barrier-effect of log storage. Forest Ecology and Management, 2009, 258, 2083-2089.	3.2	9

#	Article	IF	CITATIONS
127	Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components. Trees - Structure and Function, 2012, 26, 1669-1676.	1.9	9
128	Depth of root placement, root size and carbon reserves determine reproduction success of aspen root fragments. Forest Ecology and Management, 2014, 313, 83-90.	3.2	9
129	Effects of substrate availability and competing vegetation on natural regeneration of white spruce on logged boreal mixedwood sites. Canadian Journal of Forest Research, 2018, 48, 324-332.	1.7	9
130	Rhizome growth of Calamagrostis canadensis into mounds created for tree seedling establishment. , 1999, 18, 245-262.		8
131	Does mechanical site preparation affect trembling aspen density and growth 9–12Âyears after treatment?. New Forests, 2006, 32, 299-306.	1.7	8
132	Fertilization of lodgepole pine trees increased diameter growth but reduced root carbohydrate concentrations. Forest Ecology and Management, 2010, 260, 1914-1920.	3.2	8
133	Uniform versus Asymmetric Shading Mediates Crown Recession in Conifers. PLoS ONE, 2014, 9, e104187.	2.5	8
134	Effects of cold temperatures on breakage of lodgepole pine and white spruce twigs. Canadian Journal of Forest Research, 2001, 31, 1650-1653.	1.7	7
135	Comment on "Aging discrepancies of white spruce affect the interpretation of static age structure in boreal mixedwoods". Canadian Journal of Forest Research, 2003, 33, 2280-2281.	1.7	7
136	Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings. Physiologia Plantarum, 2016, 157, 85-94.	5.2	7
137	N-transfer through aspen litter and feather moss layers after fertilization with ammonium nitrate and urea. Plant and Soil, 2008, 311, 51-59.	3.7	6
138	Transfer of live aspen root fragments, an effective tool for large-scale boreal forest reclamation. Canadian Journal of Forest Research, 2015, 45, 1056-1064.	1.7	6
139	Too much of a good thing: landscape-scale facilitation eventually turns into competition between a lepidopteran defoliator and a bark beetle. Landscape Ecology, 2015, 30, 301-312.	4.2	6
140	Assisted lodgepole pine regeneration on reclamation sites using logging slash as both a mulch and natural seed source. Canadian Journal of Forest Research, 2016, 46, 1132-1137.	1.7	6
141	Diurnal cycles of rhizosphere acidification byPinus contorta seedlings. Plant and Soil, 1994, 162, 299-302.	3.7	5
142	Aspen regeneration on log decking areas as influenced by season and duration of log storage. New Forests, 2009, 38, 323-335.	1.7	5
143	Evaporative demand across a range of microsites in partial-cut boreal forests. Scandinavian Journal of Forest Research, 2010, 25, 118-126.	1.4	5
144	Prescribed fire as a tool to regenerate live and dead serotinous jack pine (Pinus banksiana) stands. International Journal of Wildland Fire, 2017, 26, 478.	2.4	5

#	Article	IF	CITATIONS
145	Impact of Shortened Winter Road Access on Costs of Forest Operations. Forests, 2019, 10, 447.	2.1	5
146	A partial deciduous canopy, coupled with site preparation, produces excellent growth of planted white spruce. Canadian Journal of Forest Research, 2019, 49, 270-280.	1.7	5
147	Comparing PAR transmission models for forest understorey vegetation. Applied Vegetation Science, 2005, 8, 65-76.	1.9	4
148	Emission of Nitrogen Gas, Nitrous Oxide, and Carbon Dioxide on Rehydration of Dry Feathermosses. Soil Science Society of America Journal, 2007, 71, 214-218.	2.2	4
149	Forest floor protection during drilling pad construction promotes resprouting of aspen. Ecological Engineering, 2015, 75, 9-15.	3.6	3
150	Rapid understory plant recovery following forest floor protection on temporary drilling pads. Restoration Ecology, 2018, 26, 48-55.	2.9	2
151	Inconsistent Growth Response to Fertilization and Thinning of Lodgepole Pine in the Rocky Mountain Foothills Is Linked to Site Index. International Journal of Forestry Research, 2012, 2012, 1-7.	0.8	1
152	Comparing PAR transmission models for forest understorey vegetation. Applied Vegetation Science, 2005, 8, 65.	1.9	1