List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. Journal of Molecular Catalysis A, 2001, 175, 189-204.	4.8	245
2	Methanol Oxidation on a Copper Catalyst Investigated Using in Situ X-ray Photoelectron Spectroscopyâ€. Journal of Physical Chemistry B, 2004, 108, 14340-14347.	2.6	221
3	Metallic nanosystems in catalysis. Russian Chemical Reviews, 2001, 70, 147-159.	6.5	192
4	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews, 2014, 83, 885-985.	6.5	182
5	Observation of Parahydrogenâ€Induced Polarization in Heterogeneous Hydrogenation on Supported Metal Catalysts. Angewandte Chemie - International Edition, 2008, 47, 1492-1495.	13.8	179
6	Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium. Journal of Physical Chemistry B, 2005, 109, 5728-5738.	2.6	175
7	NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, 725-751.	3.3	140
8	Atomic oxygen species on silver: Photoelectron spectroscopy and x-ray absorption studies. Physical Review B, 2003, 67, .	3.2	135
9	Interaction of Al2O3 and CeO2 Surfaces with SO2 and SO2 + O2 Studied by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 11712-11719.	2.6	128
10	The silver–oxygen system in catalysis: new insights by near ambient pressure X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 4554.	2.8	127
11	Combined in situ XPS and PTRMS study of ethylene epoxidation over silver. Journal of Catalysis, 2006, 238, 260-269.	6.2	125
12	Platinum nanoparticles on Al2O3: Correlation between the particle size and activity in total methane oxidation. Journal of Catalysis, 2009, 268, 60-67.	6.2	123
13	Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. Journal of Catalysis, 2014, 311, 59-70.	6.2	114
14	Chapter 4 Xâ€Ray Photoelectron Spectroscopy for Investigation of Heterogeneous Catalytic Processes. Advances in Catalysis, 2009, , 213-272.	0.2	105
15	Stages in the Modification of a Silver Surface for Catalysis of the Partial Oxidation of Ethylene. Journal of Catalysis, 1994, 150, 262-267.	6.2	104
16	High-Pressure Studies of CO Adsorption on Pd(111) by X-ray Photoelectron Spectroscopy and Sum-Frequency Generation. Journal of Physical Chemistry B, 2003, 107, 3522-3527.	2.6	96
17	XPS and TEM Studies on the Role of the Support and Alkali Promoter in Ru/MgO and Ruâ~'Cs+/MgO Catalysts for Ammonia Synthesis. Journal of Physical Chemistry C, 2007, 111, 9427-9436.	3.1	95
18	Methanol Dehydrogenation and Formation of Carbonaceous Overlayers on Pd(111) Studied by High-Pressure SFG and XPS Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 12955-12961.	2.6	93

#	Article	IF	CITATIONS
19	Effect of the nature of carbon support on the formation of active sites in Pd/C and Ru/C catalysts for hydrogenation of furfural. Catalysis Today, 2015, 249, 145-152.	4.4	90
20	Alloy Catalyst in a Reactive Environment: The Example of Ag-Cu Particles for Ethylene Epoxidation. Physical Review Letters, 2010, 104, 035503.	7.8	86
21	XPS Study of Stability and Reactivity of Oxidized Pt Nanoparticles Supported on TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 17297-17304.	3.1	83
22	Oxygen adsorption on Ag(111): X-ray photoelectron spectroscopy (XPS), angular dependent x-ray photoelectron spectroscopy (ADXPS) and temperature-programmed desorption (TPD) studies. Journal of Chemical Physics, 1999, 111, 2169-2175.	3.0	82
23	In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surface Science, 2013, 609, 113-118.	1.9	82
24	Particle Size Effect on CH4 Oxidation Over Noble Metals: Comparison of Pt and Pd Catalysts. Topics in Catalysis, 2013, 56, 306-310.	2.8	78
25	Mechanistic Study of Methanol Decomposition and Oxidation on Pt(111). Journal of Physical Chemistry C, 2013, 117, 8189-8197.	3.1	76
26	XPS and UPS studies of oxygen adsorption over clean and carbon-modified silver surfaces. Surface Science, 1988, 201, 195-210.	1.9	75
27	Nanostructured, Gd-Doped Ceria Promoted by Pt or Pd:Â Investigation of the Electronic and Surface Structures and Relations to Chemical Properties. Journal of Physical Chemistry B, 2005, 109, 20077-20086.	2.6	74
28	Stages in the Modification of a Silver Surface for Catalysis of the Partial Oxidation of Ethylene. Journal of Catalysis, 1994, 150, 268-273.	6.2	73
29	Highâ€Resolution 3D Proton MRI of Hyperpolarized Gas Enabled by Parahydrogen and Rh/TiO ₂ Heterogeneous Catalyst. Chemistry - A European Journal, 2014, 20, 11636-11639.	3.3	72
30	Propane- <i>d</i> ₆ Heterogeneously Hyperpolarized by Parahydrogen. Journal of Physical Chemistry C, 2014, 118, 28234-28243.	3.1	71
31	Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Applied Catalysis, 1989, 54, 277-288.	0.8	70
32	Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis. Catalysis Today, 2009, 144, 292-305.	4.4	70
33	Redox mechanism for selective oxidation of ethanol over monolayer V2O5/TiO2 catalysts. Journal of Catalysis, 2016, 338, 82-93.	6.2	70
34	X-ray photoelectron spectroscopy as a tool for in-situ study of the mechanisms of heterogeneous catalytic reactions. Topics in Catalysis, 2005, 32, 3-15.	2.8	69
35	Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: Impact of the mass-transfer processes on the overall kinetics. Chemical Engineering Journal, 2013, 223, 921-931.	12.7	68
36	XPS study of the silica-supported Fe-containing catalysts for deep or partial H2S oxidation. Journal of Molecular Catalysis A, 2000, 158, 251-255.	4.8	67

#	Article	IF	CITATIONS
37	Role of Different Active Sites in Heterogeneous Alkene Hydrogenation on Platinum Catalysts Revealed by Means of Parahydrogen-Induced Polarization. Journal of Physical Chemistry C, 2011, 115, 13386-13391.	3.1	66
38	SiCN alloys obtained by remote plasma chemical vapour deposition from novel precursors. Thin Solid Films, 2003, 429, 144-151.	1.8	60
39	H2O2-based selective oxidations over titaniumsilicates of SBA-15 type. Microporous and Mesoporous Materials, 2003, 59, 73-84.	4.4	59
40	Heterogeneous Microtesla SABRE Enhancement of ¹⁵ N NMR Signals. Angewandte Chemie - International Edition, 2017, 56, 10433-10437.	13.8	58
41	The Nature of Electrophilic and Nucleophilic Oxygen Adsorbed on Silver. Kinetics and Catalysis, 2003, 44, 432-440.	1.0	56
42	Heterogeneous addition of H2 to double and triple bonds over supported Pd catalysts: a parahydrogen-induced polarization technique study. Physical Chemistry Chemical Physics, 2012, 14, 11008.	2.8	56
43	Effect of γ-Al2O3 hydrothermal treatment on the formation and properties of platinum sites in Pt/γ-Al2O3 catalysts. Applied Catalysis A: General, 2014, 469, 472-482.	4.3	56
44	Strong Metal–Support Interactions for Palladium Supported on TiO ₂ Catalysts in the Heterogeneous Hydrogenation with Parahydrogen. ChemCatChem, 2015, 7, 2581-2584.	3.7	54
45	XPS, TPD and TPR studies of Cs–O complexes on silver: their role in ethylene epoxidation. Journal of Molecular Catalysis A, 2000, 158, 337-343.	4.8	53
46	Selective vapour-phase α-pinene isomerization to camphene over gold-on-alumina catalyst. Applied Catalysis A: General, 2010, 385, 136-143.	4.3	53
47	Model Ag/HOPG catalysts: preparation and STM/XPS study. Catalysis Science and Technology, 2011, 1, 1432.	4.1	53
48	Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 89-100.	20.2	53
49	Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR. Surface Science, 1994, 320, L47-L50.	1.9	52
50	One-pot reductive amination of aldehydes with nitroarenes over an Au/Al ₂ O ₃ catalyst in a continuous flow reactor. Catalysis Science and Technology, 2015, 5, 4741-4745.	4.1	51
51	Liquid-phase hydrogenation of benzaldehyde over Pd-Ru/C catalysts: Synergistic effect between supported metals. Catalysis Today, 2017, 279, 2-9.	4.4	51
52	Platinum nanoparticle size effect on specific catalytic activity in n-alkane deep oxidation: Dependence on the chain length of the paraffin. Kinetics and Catalysis, 2009, 50, 830-836.	1.0	50
53	XPS/STM study of model bimetallic Pd–Au/HOPG catalysts. Applied Surface Science, 2016, 367, 214-221.	6.1	50
54	Selective Single‣ite Pdâ^'In Hydrogenation Catalyst for Production of Enhanced Magnetic Resonance Signals using Parahydrogen. Chemistry - A European Journal, 2018, 24, 2547-2553.	3.3	50

#	Article	IF	CITATIONS
55	Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects. Applied Surface Science, 2011, 258, 1541-1550.	6.1	48
56	Interaction of SO ₂ with Pt Model Supported Catalysts Studied by XPS. Journal of Physical Chemistry C, 2014, 118, 22120-22135.	3.1	48
57	Electronic state of cobalt and oxygen ions in stoichiometric and nonstoichiometric Li1+xCoO2 before and after delithiation according to XPS and DRS. Journal of Power Sources, 2003, 119-121, 669-673.	7.8	46
58	Vapour phase formic acid decomposition over PdAu/γ-Al2O3 catalysts: Effect of composition of metallic particles. Journal of Catalysis, 2013, 299, 171-180.	6.2	45
59	<i>In situ</i> formation of the active sites in Pd–Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Faraday Discussions, 2018, 208, 255-268.	3.2	45
60	C–O bond scission on "defect-rich and perfect―Pd(111)?. Surface Science, 2004, 566-568, 1024-1029.	1.9	44
61	Two oxygen states and the role of carbon in partial oxidation of ethylene over silver. Surface Science, 1990, 232, L205-L209.	1.9	43
62	In situ study of selective oxidation of methanol to formaldehyde over copper. Reaction Kinetics and Catalysis Letters, 2003, 79, 181-188.	0.6	43
63	Title is missing!. Catalysis Letters, 2001, 74, 121-125.	2.6	42
64	CO dissociation and CO hydrogenation on smooth and ion-bombarded Pd(111): SFG and XPS spectroscopy at mbar pressures. Applied Surface Science, 2004, 235, 26-31.	6.1	42
65	In situ XPS and MS study of methanol decomposition and oxidation on Pd(111) under millibar pressure range. Surface Science, 2012, 606, 420-425.	1.9	42
66	The combined application of XPS and TPD to study of oxygen adsorption on graphite-supported silver clusters. Journal of Molecular Catalysis A, 2000, 158, 167-172.	4.8	40
67	Aqueous, Heterogeneous <i>para</i> -Hydrogen-Induced ¹⁵ N Polarization. Journal of Physical Chemistry C, 2017, 121, 15304-15309.	3.1	40
68	Pd Segregation on the Surface of Bimetallic PdAu Nanoparticles Induced by Low Coverage of Adsorbed CO. Journal of Physical Chemistry C, 2019, 123, 8037-8046.	3.1	40
69	Size effect in the oxidation of platinum nanoparticles on graphite with nitrogen dioxide: An XPS and STM study. Kinetics and Catalysis, 2014, 55, 354-360.	1.0	38
70	CO2 activation on ultrathin ZrO2 film by H2O co-adsorption: In situ NAP-XPS and IRAS studies. Surface Science, 2019, 679, 139-146.	1.9	38
71	An XPS study of the composition of iridium films obtained by MO CVD. Surface Science, 1992, 275, 323-331.	1.9	36
72	Evaluation of the Mechanism of Heterogeneous Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Pairwise Hydrogen Addition. ACS Catalysis, 2014, 4, 2022-2028.	11.2	36

#	Article	IF	CITATIONS
73	Production of Pure Aqueous ¹³ Câ€Hyperpolarized Acetate by Heterogeneous Parahydrogenâ€Induced Polarization. Chemistry - A European Journal, 2016, 22, 16446-16449.	3.3	36
74	Decomposition of ethylene and a mechanism of graphite formation on the Pt(110) surface. Surface Science, 1991, 258, 289-301.	1.9	35
75	Modern trends in the development of surface science as applied to catalysis. The elucidation of the structure–activity relationships in heterogeneous catalysts. Russian Chemical Reviews, 2007, 76, 553-581.	6.5	35
76	New binary systems Mg–M–O (M=Y, La, Ce): Synthesis and physico-chemical characterization. Journal of Solid State Chemistry, 2005, 178, 3265-3274.	2.9	34
77	Synthesis of secondary amines by reductive amination of aldehydes with nitroarenes over supported copper catalysts in a flow reactor. Catalysis Communications, 2017, 102, 108-113.	3.3	34
78	Chemical vapor infiltration method for deposition of gold nanoparticles on porous alumina supports. Journal of Structural Chemistry, 2006, 47, 458-464.	1.0	33
79	Oxidation of propylene over Pd(5 5 1): Temperature hysteresis induced by carbon deposition and oxygen adsorption. Catalysis Today, 2015, 244, 29-35.	4.4	33
80	Concentration Hysteresis in the Oxidation of Methane over Pt/γ-Al ₂ O ₃ : X-ray Absorption Spectroscopy and Kinetic Study. ACS Catalysis, 2015, 5, 2795-2804.	11.2	33
81	Chemical Exchange Reaction Effect on Polarization Transfer Efficiency in SLIC-SABRE. Journal of Physical Chemistry A, 2018, 122, 9107-9114.	2.5	33
82	X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NOx. Journal of Structural Chemistry, 2007, 48, 1053-1060.	1.0	31
83	2D Mapping of NMR Signal Enhancement and Relaxation for Heterogeneously Hyperpolarized Propane Gas. Journal of Physical Chemistry C, 2017, 121, 10038-10046.	3.1	31
84	Effect of the calcination temperature on the properties of Fe2O3/SiO2 catalysts for oxidation of hydrogen sulfide. Reaction Kinetics and Catalysis Letters, 2007, 92, 89-97.	0.6	30
85	An XPS Study of the Promotion of Ru-Cs/Sibunit Catalysts for Ammonia Synthesis. Kinetics and Catalysis, 2005, 46, 597-602.	1.0	28
86	Toward production of pure ¹³ C hyperpolarized metabolites using heterogeneous parahydrogen-induced polarization of ethyl[1- ¹³ C]acetate. RSC Advances, 2016, 6, 69728-69732.	3.6	28
87	Title is missing!. Kinetics and Catalysis, 2003, 44, 575-583.	1.0	27
88	Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation. Applied Surface Science, 2016, 363, 303-309.	6.1	27
89	Propane Oxidation Over Pd/Al2O3: Kinetic and In Situ XPS Study. Topics in Catalysis, 2017, 60, 190-197.	2.8	27
90	Robust Imidazoleâ€ ¹⁵ N ₂ Synthesis for Highâ€Resolution Lowâ€Field (0.05 T) ¹⁵ NÂHyperpolarized NMR Spectroscopy. ChemistrySelect, 2017, 2, 4478-4483.	1.5	27

#	Article	IF	CITATIONS
91	Heterogeneous Microtesla SABRE Enhancement of ¹⁵ N NMR Signals. Angewandte Chemie, 2017, 129, 10569-10573.	2.0	27
92	Single‣ite Heterogeneous Catalysts: From Synthesis to NMR Signal Enhancement. Chemistry - A European Journal, 2019, 25, 1420-1431.	3.3	27
93	Comparative Study of Rubidium and Cesium as Promoters in Carbon-supported Ruthenium Catalysts for Ammonia Synthesis. Catalysis Letters, 2008, 120, 204-209.	2.6	26
94	Selective Liquidâ€Phase Hydrogenation of a Nitro Group in Substituted Nitrobenzenes over Au/Al ₂ O ₃ Catalyst in a Packedâ€Bed Flow Reactor. ChemPlusChem, 2015, 80, 1741-1749.	2.8	26
95	SOx uptake and release properties of TiO2/Al2O3 and BaO/TiO2/Al2O3 mixed oxide systems as NOx storage materials. Catalysis Today, 2012, 184, 54-71.	4.4	25
96	An XPS study of the oxidation of noble metal particles evaporated onto the surface of an oxide support in their reaction with NO x. Kinetics and Catalysis, 2012, 53, 117-124.	1.0	25
97	Selective oxidation of formaldehyde to formic acid over supported vanadia catalysts. Applied Catalysis A: General, 2014, 475, 98-108.	4.3	25
98	Using X-ray Photoelectron Spectroscopy To Evaluate Size of Metal Nanoparticles in the Model Au/C Samples. Journal of Physical Chemistry C, 2016, 120, 10419-10426.	3.1	25
99	The origin of self-sustained reaction-rate oscillations in the oxidation of methane over nickel: an operando XRD and mass spectrometry study. Catalysis Science and Technology, 2017, 7, 1646-1649.	4.1	25
100	Application of differential charging for analysis of electronic properties of supported silver. Journal of Electron Spectroscopy and Related Phenomena, 1996, 77, 7-13.	1.7	24
101	The role of support in formation of the manganese–bismuth oxide catalyst for synthesis of nitrous oxide through oxidation of ammonia with oxygen. Journal of Catalysis, 2004, 221, 213-224.	6.2	24
102	Preparation of Ag/HOPG model catalysts with a variable particle size and an in situ xps study of their catalytic properties in ethylene oxidation. Kinetics and Catalysis, 2011, 52, 855-861.	1.0	24
103	In-situ XPS investigation of nitric oxide adsorption on (111), (310), and (533) gold single crystal faces. Surface Science, 2012, 606, 559-563.	1.9	24
104	Alumina-supported platinum catalysts: Local atomic structure and catalytic activity for complete methane oxidation. Applied Catalysis A: General, 2014, 486, 12-18.	4.3	24
105	Catalysis and Nuclear Magnetic Resonance Signal Enhancement with Parahydrogen. Topics in Catalysis, 2016, 59, 1686-1699.	2.8	24
106	In Situ Study of the Selective Oxidation of Methanol to Formaldehyde on Copper. Kinetics and Catalysis, 2003, 44, 662-668.	1.0	23
107	Chapter 9. Ethylene Epoxidation over Silver Catalysts. RSC Nanoscience and Nanotechnology, 2011, , 214-247.	0.2	23
108	Active component of supported vanadium catalysts in the selective oxidation of methanol. Kinetics and Catalysis, 2016, 57, 82-94.	1.0	23

#	Article	IF	CITATIONS
109	Activation of the C-O bond on the surface of palladium: An In situ study by X-ray photoelectron spectroscopy and sum frequency generation. Kinetics and Catalysis, 2005, 46, 269-281.	1.0	22
110	XPS study of gold oxidation with nitrogen dioxide in model Au/C samples. Kinetics and Catalysis, 2015, 56, 796-800.	1.0	22
111	An XPS and STM study of the size effect in NO adsorption on gold nanoparticles. Russian Chemical Bulletin, 2011, 60, 1977-1984.	1.5	21
112	Origin of temperature oscillations of nickel catalyst occurring in methane oxidation. Kinetics and Catalysis, 2015, 56, 598-604.	1.0	21
113	CO-induced segregation as an efficient tool to control the surface composition and catalytic performance of PdAg3/Al2O3 catalyst. Mendeleev Communications, 2019, 29, 547-549.	1.6	21
114	In Situ XPS and MS Study of Methane Oxidation on the Pd–Pt/Al2O3 Catalysts. Topics in Catalysis, 2020, 63, 66-74.	2.8	21
115	Formation of Ru–M/Sibunit Catalysts for Ammonia Synthesis. Kinetics and Catalysis, 2004, 45, 414-421.	1.0	20
116	Propane oxidation on nickel in a self-oscillation mode. Kinetics and Catalysis, 2005, 46, 251-259.	1.0	20
117	XAFS study of Pt/Al2O3 nanosystem with metal-oxide active component. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 108-110.	1.6	20
118	Heterogeneous catalysts for the transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons. Russian Chemical Reviews, 2011, 80, 911-925.	6.5	20
119	Hydrogenation of Unsaturated Six-Membered Cyclic Hydrocarbons Studied by the Parahydrogen-Induced Polarization Technique. Journal of Physical Chemistry C, 2016, 120, 13541-13548.	3.1	20
120	The effect of oxidative and reductive treatments of titania-supported metal catalysts on the pairwise hydrogen addition to unsaturated hydrocarbons. Catalysis Today, 2017, 283, 82-88.	4.4	20
121	New Pt/Alumina model catalysts for STM and in situ XPS studies. Applied Surface Science, 2017, 401, 341-347.	6.1	20
122	Formation of supported intermetallic nanoparticles in the Pd–Zn/α-Al2O3 catalyst. Kinetics and Catalysis, 2017, 58, 471-479.	1.0	20
123	Mechanistic Insight into the Heterogeneous Hydrogenation of Furan Derivatives with the use of Parahydrogen. ChemCatChem, 2018, 10, 1178-1183.	3.7	20
124	An XPS and STM Study of Oxidized Platinum Particles Formed by the Interaction between Pt/HOPG with NO2. Kinetics and Catalysis, 2018, 59, 653-662.	1.0	20
125	Nanosized Au/C catalyst obtained from a tetraamminegold(III) precursor: Synthesis, characterization, and catalytic activity in low-temperature CO oxidation. Kinetics and Catalysis, 2010, 51, 885-892.	1.0	19
126	Are Au Nanoparticles on Oxygen-Free Supports Catalytically Active?. Topics in Catalysis, 2016, 59, 469-477.	2.8	19

#	Article	IF	CITATIONS
127	Model Bimetallic Pd–Ag/HOPG Catalysts: An XPS and STM Study. Kinetics and Catalysis, 2018, 59, 776-785.	1.0	19
128	Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane. ChemPhysChem, 2018, 19, 2621-2626.	2.1	19
129	Dependence of the catalytic activity of Ag/Al2O3 on the silver concentration in the selective reduction of NO x with n-hexane in the presence of H2. Kinetics and Catalysis, 2012, 53, 107-116.	1.0	18
130	The model thin film alumina catalyst support suitable for catalysis-oriented surface science studies. Applied Surface Science, 2015, 349, 310-318.	6.1	18
131	Synthesis of unsaturated secondary amines by direct reductive amination of aliphatic aldehydes with nitroarenes over Au/Al ₂ O ₃ catalyst in continuous flow mode. RSC Advances, 2016, 6, 88366-88372.	3.6	18
132	Relaxation Dynamics of Nuclear Long-Lived Spin States in Propane and Propane-d6 Hyperpolarized by Parahydrogen. Journal of Physical Chemistry C, 2019, 123, 11734-11744.	3.1	18
133	Deciphering the Nature of Ru Sites in Reductively Exsolved Oxides with Electronic and Geometric Metal–Support Interactions. Journal of Physical Chemistry C, 2020, 124, 25299-25307.	3.1	18
134	Mechanistic <i>in situ</i> investigation of heterogeneous hydrogenation over Rh/TiO ₂ catalysts: selectivity, pairwise route and catalyst nature. Faraday Discussions, 2021, 229, 161-175.	3.2	18
135	ARXPS-based concentration profiles restoration applied to adsorbate/metal systems. Surface Science, 1992, 271, 493-500.	1.9	17
136	Electrodeposited Pd Sub-Monolayers on Carbon-Supported Au Particles of Few Nanometers in Size: Electrocatalytic Activity for Hydrogen Oxidation and CO Tolerance Vs. Pd Coverage. Electrocatalysis, 2012, 3, 119-131.	3.0	17
137	Kinetic Study of Propylene Hydrogenation over Pt/Al2O3 by Parahydrogen-Induced Polarization. Applied Magnetic Resonance, 2013, 44, 279-288.	1.2	17
138	Studies on three-way catalysis with supported gold catalysts. Influence of support and water content in feed. Applied Catalysis B: Environmental, 2017, 203, 572-581.	20.2	17
139	Bimetallic Pd–Au/Highly Oriented Pyrolytic Graphite Catalysts: from Composition to Pairwise Parahydrogen Addition Selectivity. Journal of Physical Chemistry C, 2018, 122, 18588-18595.	3.1	17
140	Enhanced catalytic activity for hydrogen electrooxidation and CO tolerance of carbon-supported non-stoichiometric palladium carbides. Journal of Molecular Catalysis A, 2012, 353-354, 204-214.	4.8	16
141	Size effect in the liquid phase semihydrogenation of substituted alkynes over supported Pd/Al2O3 catalysts. Mendeleev Communications, 2015, 25, 367-369.	1.6	16
142	<i>In Situ</i> NAP-XPS and Mass Spectrometry Study of the Oxidation of Propylene over Palladium. Journal of Physical Chemistry C, 2018, 122, 4315-4323.	3.1	16
143	Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with <i>para</i> hydrogen. Catalysis Science and Technology, 2020, 10, 99-104.	4.1	16
144	Experimental and theoretical analysis of particle size effect in liquid-phase hydrogenation of diphenylacetylene. Chemical Engineering Journal, 2021, 404, 126409.	12.7	16

#	Article	IF	CITATIONS
145	Effect of the Support on the Nature of Metal-Promoter Interactions in Ru-Cs+/MgO and Ru-Cs+-Al2O3 Catalysts for Ammonia Synthesis. Kinetics and Catalysis, 2005, 46, 891-899.	1.0	15
146	Growth of nitrogen-doped carbon nanotubes and fibers over a gold-on-alumina catalyst. Carbon, 2012, 50, 1186-1196.	10.3	15
147	Mobility and reactivity of lattice oxygen in Gd-doped ceria promoted by Pt. Reaction Kinetics and Catalysis Letters, 2005, 85, 367-374.	0.6	14
148	Mobility and reactivity of the lattice oxygen of Pr-doped ceria promoted with Pt. Reaction Kinetics and Catalysis Letters, 2005, 86, 21-28.	0.6	14
149	Use of the differential charging effect in XPS to determine the nature of surface compounds resulting from the interaction of a Pt/BaCO3/Al2O3 model catalyst with NO x. Kinetics and Catalysis, 2008, 49, 831-839.	1.0	14
150	An in situ cell for investigation of the catalyst structure using synchrotron radiation. Journal of Structural Chemistry, 2010, 51, 20-27.	1.0	14
151	In situ XPS study of the size effect in the interaction of NO with the surface of the model Ag/Al2O3/FeCrAl catalysts. Russian Chemical Bulletin, 2015, 64, 2780-2785.	1.5	14
152	A low-temperature method for measuring oxygen storage capacity of ceria-containing oxides. Catalysis Science and Technology, 2016, 6, 5891-5898.	4.1	14
153	Title is missing!. Kinetics and Catalysis, 2001, 42, 837-846.	1.0	13
154	Role of the Exposed Pt Active Sites and BaO ₂ Formation in NO _{<i>x</i>} Storage Reduction Systems: A Model Catalyst Study on BaO _{<i>x</i>} /Pt(111). Journal of Physical Chemistry C, 2011, 115, 24256-24266.	3.1	13
155	Mathematical simulation of self-oscillations in methane oxidation on nickel: An isothermal model. Kinetics and Catalysis, 2012, 53, 374-383.	1.0	13
156	Size effect in the oxidation–reduction processes of platinum particles supported onto silicon dioxide. Kinetics and Catalysis, 2015, 56, 801-809.	1.0	13
157	Flow synthesis of secondary amines over Ag/Al ₂ O ₃ catalyst by one-pot reductive amination of aldehydes with nitroarenes. RSC Advances, 2017, 7, 45856-45861.	3.6	13
158	Unique stability of μ-hydroxo ligands in Pt(IV) complexes towards alkaline hydrolysis. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 182-184.	1.6	12
159	Direct Evidence for the Instability and Deactivation of Mixed-Oxide Systems: Influence of Surface Segregation and Subsurface Diffusion. Journal of Physical Chemistry C, 2011, 115, 22438-22443.	3.1	12
160	H2-Induced NO x Adsorption/Desorption over Ag/Al2O3: Transient Experiments and TPD Study. Topics in Catalysis, 2011, 54, 1190-1196.	2.8	12
161	Interactive Surface Chemistry of CO ₂ and NO ₂ on Metal Oxide Surfaces: Competition for Catalytic Adsorption Sites and Reactivity. Journal of Physical Chemistry C, 2013, 117, 7713-7720.	3.1	12
162	Formation of platinum sites on layered double hydroxide type basic supports: III. Effect of the mechanism of [PtCl6]2â^' complex binding to aluminum-magnesium layered double hydroxides on the properties of supported platinum in Pt/MgAlO x catalysts. Kinetics and Catalysis, 2014, 55, 786-792.	1.0	12

#	Article	IF	CITATIONS
163	Oxide-free InAs(111)A interface in metal-oxide-semiconductor structure with very low density of states prepared by anodic oxidation. Applied Physics Letters, 2014, 105, .	3.3	12
164	Interaction of silica-supported small silver clusters with molecular oxygen. A computational study. Surface Science, 2014, 630, 265-272.	1.9	12
165	Nanocatalysis: A bibliometric analysis. Kinetics and Catalysis, 2014, 55, 1-11.	1.0	12
166	Analysis of the oxidation state of platinum particles in supported catalysts by double differentiation of XPS lines. Journal of Structural Chemistry, 2016, 57, 1127-1133.	1.0	12
167	Influence of preparation conditions on catalytic activity and stability of platinum on alumina catalysts in methane oxidation. Applied Catalysis A: General, 2018, 566, 174-180.	4.3	12
168	Heterogeneous hydrogenation of phenylalkynes with parahydrogen: hyperpolarization, reaction selectivity, and kinetics. Physical Chemistry Chemical Physics, 2019, 21, 26477-26482.	2.8	12
169	Three-way catalysis with bimetallic supported Pd-Au catalysts: Gold as a poison and as a promotor. Applied Catalysis B: Environmental, 2021, 282, 119614.	20.2	12
170	Heterogeneous Parahydrogenâ€induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications. Chemistry - A European Journal, 2021, 27, 1316-1322.	3.3	12
171	Size effects in catalysis by supported metal nanoparticles. Catalysis in Industry, 2009, 1, 17-28.	0.7	11
172	Oxidation of a platinum foil with nitrogen dioxide. Kinetics and Catalysis, 2016, 57, 826-830.	1.0	11
173	Study of Catalyst Deactivation in Liquid-Phase Hydrogenation of 3-Nitrostyrene Over Au/Al2O3 Catalyst in Flow Reactor. Catalysis Letters, 2017, 147, 572-580.	2.6	11
174	In Situ Study of Self-sustained Oscillations in Propane Oxidation and Propane Steam Reforming with Oxygen Over Nickel. Catalysis Letters, 2019, 149, 313-321.	2.6	11
175	Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium. Topics in Catalysis, 2020, 63, 152-165.	2.8	11
176	Parahydrogenâ€Induced Polarization of Diethyl Ether Anesthetic. Chemistry - A European Journal, 2020, 26, 13621-13626.	3.3	11
177	Anchored complexes of rhodium and iridium for the hydrogenation of alkynes and olefins with parahydrogen. Catalysis Science and Technology, 2022, 12, 3247-3253.	4.1	11
178	Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 470, 302-305.	1.6	10
179	Reaction of CO oxidation on platinum, rhodium, a platinum-rhodium alloy, and a heterophase bimetallic platinum/rhodium surface. Kinetics and Catalysis, 2007, 48, 298-304.	1.0	10
180	Small gold species supported on alumina. A computational study of <i>α</i> â€Al ₂ O ₃ (0001) and γâ€Al ₂ O ₃ (001) using an embeddedâ€cluster approach. Physica Status Solidi (B): Basic Research, 2010, 247, 1023-1031.	1.5	10

#	Article	IF	CITATIONS
181	Enhanced Sulfur Tolerance of Ceria-Promoted NO x Storage Reduction (NSR) Catalysts: Sulfur Uptake, Thermal Regeneration and Reduction with H2(g). Topics in Catalysis, 2013, 56, 950-957.	2.8	10
182	Decomposition and oxidation of methanol on platinum: A study by in situ X-ray photoelectron spectroscopy and mass spectrometry. Kinetics and Catalysis, 2014, 55, 509-519.	1.0	10
183	One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. Kinetics and Catalysis, 2018, 59, 593-600.	1.0	10
184	Particle-Size Effect in Catalytic Oxidation Over Pt Nanoparticles. , 2019, , 295-320.		10
185	Thermography study of propane oxidation to synthesis-gas over nickel. Chemical Engineering Journal, 2005, 107, 33-38.	12.7	9
186	Effect of Pt nanoparticle size on the specific catalytic activity of Pt/SiO2 and Pt/TiO2 in the total oxidation of methane and n-butane. Russian Chemical Bulletin, 2010, 59, 1713-1719.	1.5	9
187	Effect of oxygen adsorption on the surface plasmon resonance of oxide-supported silver nanoparticles. Doklady Physical Chemistry, 2011, 436, 23-25.	0.9	9
188	Formation of anodic layers on InAs (111)III. Study of the chemical composition. Semiconductors, 2012, 46, 552-558.	0.5	9
189	Liquid-phase hydrogenation of diphenylacetylene on Pd-Au/Al2O3 bimetallic catalysts. Russian Chemical Bulletin, 2015, 64, 53-57.	1.5	9
190	Reversible Bulk Oxidation of Ni Foil During Oscillatory Catalytic Oxidation of Propane: A Novel Type of Spatiotemporal Self-Organization. Physical Review Letters, 2017, 119, 026001.	7.8	9
191	Formation of Surface Platinum Oxides in the Interaction of the Pt/Sibunit Catalysts with NO2: Estimates of the Width of Oxide Shell from XPS Data. Kinetics and Catalysis, 2018, 59, 663-671.	1.0	9
192	Heterogeneous ¹ H and ¹³ C Parahydrogenâ€Induced Polarization of Acetate and Pyruvate Esters. ChemPhysChem, 2021, 22, 1389-1396.	2.1	9
193	The state of oxygen on the surface of polycrystalline silver. Reaction Kinetics and Catalysis Letters, 1989, 39, 21-26.	0.6	8
194	Use of the differential charging effect in XPS to determine the nature of surface compounds resulting from the interaction of a Pt/(BaCO3 + CeO2) model catalyst with SO x. Kinetics and Catalysis, 2011, 52, 595-604.	1.0	8
195	Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel. Journal of Physical Chemistry A, 2017, 121, 6874-6886.	2.5	8
196	An XPS Study of the Interaction of a Palladium Foil with NO2. Kinetics and Catalysis, 2018, 59, 786-791.	1.0	8
197	Size Effect in Silver Oxidation By Nitrogen Dioxide. Journal of Structural Chemistry, 2018, 59, 1726-1729.	1.0	8
198	Atomic scale structural defects in the graphite layer for model catalysis. Surface Science, 2018, 677, 90-92.	1.9	8

#	Article	IF	CITATIONS
199	Effect of Mono-, Di-, and Triethylene Glycol on the Activity of Phosphate-Doped NiMo/Al2O3 Hydrotreating Catalysts. Catalysts, 2019, 9, 96.	3.5	8
200	Pd–Cu/HOPG and Pd–Ag/HOPG Model Catalysts in CO and Methanol Oxidations at Submillibar Pressures. Kinetics and Catalysis, 2019, 60, 832-841.	1.0	8
201	Mechanistic study of methanol oxidation on Pt(1 1 1) single crystal. Applied Surface Science, 2022, 579, 152140.	6.1	8
202	Surface vanadium compounds in supported vanadium–magnesium catalysts for ethylene polymerization: X-ray photoelectron and infrared diffusion reflectance spectroscopy studies. Journal of Molecular Catalysis A, 2000, 158, 443-446.	4.8	7
203	Title is missing!. Kinetics and Catalysis, 2003, 44, 420-431.	1.0	7
204	XAS study on microstructure of Au nanoparticles deposited onto alumina. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 105-108.	1.6	7
205	Structure of catalytically active gold nanoparticles by XAFS spectroscopy. Journal of Physics: Conference Series, 2009, 190, 012121.	0.4	7
206	Concentration hysteresis in methane oxidation on nanosized platinum particles. Doklady Physical Chemistry, 2011, 439, 131-134.	0.9	7
207	Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, <i>Ellobius talpinus</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140919.	2.6	7
208	Ferromagnetic HfO2/Si/GaAs interface for spin-polarimetry applications. Applied Physics Letters, 2015, 107, .	3.3	7
209	Model sulfur-resistant NSR catalysts: An XPS study of the interaction of BaO/TiO2-ZrO2 and Pt-BaO/TiO2-ZrO2 with NO2. Kinetics and Catalysis, 2015, 56, 540-548.	1.0	7
210	A versatile synthetic route to the preparation of ¹⁵ N heterocycles. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 892-902.	1.0	7
211	The effect of Pd(II) chloride complexes anchoring on the formation and properties of Pd/MgAlOx catalysts. Journal of Catalysis, 2020, 392, 108-118.	6.2	7
212	Investigation of concentration hysteresis in methane oxidation on bimetallic Pt–Pd/Al2O3 catalyst by in situ XPS and mass spectrometry. Mendeleev Communications, 2021, 31, 635-637.	1.6	7
213	Silicon surface cleaning using XeF2 gas treatment. Applied Surface Science, 1995, 90, 191-194.	6.1	6
214	CO oxidation over the Pt-Rh system. 3. Reaction on a heterophase surface. Reaction Kinetics and Catalysis Letters, 2003, 78, 121-127.	0.6	6
215	Structure of the active component and catalytic properties of catalysts prepared by the reduction of layered nickel aluminosilicates. Kinetics and Catalysis, 2006, 47, 412-422.	1.0	6
216	Identification of gold oxide cluster structures in Au/Al2O3 catalysts for low-temperature CO oxidation. Doklady Physical Chemistry, 2007, 413, 75-80.	0.9	6

#	Article	IF	CITATIONS
217	A new method for estimating the dispersity of deposited metallic nanoparticles and extent of their interaction with the support matrices. Journal of Structural Chemistry, 2010, 51, 1-10.	1.0	6
218	Chemoselective hydrogenation of 3-nitrostyrene over Ag/TiO2-SiO2 catalyst in a flow reactor. Mendeleev Communications, 2019, 29, 553-555.	1.6	6
219	Glyphosate: Methods of Synthesis. Kinetics and Catalysis, 2021, 62, 331-341.	1.0	6
220	Gas-Phase NMR of Hyperpolarized Propane with 1H-to-13C Polarization Transfer by PH-INEPT. Applied Magnetic Resonance, 2022, 53, 653-669.	1.2	6
221	CO oxidation over a Pt-Rh system. 1. Reaction on individual metals. Reaction Kinetics and Catalysis Letters, 2002, 77, 255-261.	0.6	5
222	CO oxidation over the Pt-Rh system. 2. Reaction on an alloy. Reaction Kinetics and Catalysis Letters, 2003, 78, 107-112.	0.6	5
223	Microfaceting and thermodynamic stability of the surface under chemisorption conditions. Kinetics and Catalysis, 2005, 46, 295-299.	1.0	5
224	Selection of modifying additives for improving the steam tolerance of methane afterburning palladium catalysts. Catalysis in Industry, 2011, 3, 350-357.	0.7	5
225	Peculiarities of aluminium interaction with Ga85In15 eutectics as evidenced by X-ray synchrotron diagnostics. Crystallography Reports, 2012, 57, 693-699.	0.6	5
226	Influence of a precursor solution on the characteristics of platinum on alumina catalysts. Mendeleev Communications, 2017, 27, 70-71.	1.6	5
227	The Reasons for Nonlinear Phenomena in Oxidation of Methane over Nickel. Kinetics and Catalysis, 2018, 59, 810-819.	1.0	5
228	Sulfide Catalysts for Production of Motor Fuels from Fatty Acid Triglycerides. Russian Journal of Applied Chemistry, 2018, 91, 1905-1911.	0.5	5
229	Nonclassical Adsorption of Methanol on Palladium: The Competition between Adsorption of Single Molecules and Clusters. Journal of Physical Chemistry C, 2019, 123, 7259-7265.	3.1	5
230	Hydrogen cartridge material based on aluminum commercial alloys activated by Ga-In eutectic. Materials Today: Proceedings, 2020, 25, 505-508.	1.8	5
231	Room Temperature Oxidation of the Surface of Highly Oriented Pyrolytic Graphite (HOPG) with Nitrogen Dioxide in the Presence of Supported Palladium Particles. Kinetics and Catalysis, 2020, 61, 637-645.	1.0	5
232	Oscillatory Behavior in Oxidation of Propane Over Nickel Foil and Films. Topics in Catalysis, 2020, 63, 24-32.	2.8	5
233	Room Temperature Interaction of NO2 with Palladium Nanoparticles Supported on a Nonactivated Surface of Highly Oriented Pyrolytic Graphite (HOPG). Kinetics and Catalysis, 2020, 61, 907-911.	1.0	5
234	Pd on Nanodiamond/Graphene in Hydrogenation of Propyne with Parahydrogen. Journal of Physical Chemistry C, 2021, 125, 27221-27229.	3.1	5

#	Article	IF	CITATIONS
235	Mechanisms of Methylenecyclobutane Hydrogenation over Supported Metal Catalysts Studied by Parahydrogenâ€Induced Polarization Technique. ChemPhysChem, 2022, 23, .	2.1	5
236	Preparation of palladium catalysts via thermal decomposition of supported Pd(O) complexes. Reaction Kinetics and Catalysis Letters, 1989, 38, 109-114.	0.6	4
237	X-ray photoelectron study of the interaction of H2 and H2+O2 mixtures on the Pt/MoO3 model catalyst. Journal of Structural Chemistry, 2008, 49, 255-260.	1.0	4
238	Vanadium-titanium oxides: Sol-gel synthesis and catalytic properties in chlorobenzene oxidation. Kinetics and Catalysis, 2008, 49, 446-450.	1.0	4
239	Structural determination of palladous oxide–ceria nanosystem supported on γ-alumina. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 178-181.	1.6	4
240	Study of the local structure of supported nanostructural platinum catalysts. Journal of Structural Chemistry, 2010, 51, 11-19.	1.0	4
241	XPS for in situ study of the mechanisms of heterogeneous catalytic reactions. Journal of Structural Chemistry, 2011, 52, 90-101.	1.0	4
242	Contribution of (NO3 â~')surf Reduction to the Overall Mechanism of H2-Promoted n-C6H14-DeNOx Over Ag/Al2O3. Topics in Catalysis, 2013, 56, 187-192.	2.8	4
243	Comparison of thermal stability of gold nanoparticles deposited on Al2O3 and Fe2O3 in the CO + O2 reaction medium. Russian Chemical Bulletin, 2014, 63, 2733-2736.	1.5	4
244	AN XPS study of the interaction of model Ba/TiO2 AND Ba/ZrO2 NSR catalysts with NO2. Journal of Structural Chemistry, 2014, 55, 757-763.	1.0	4
245	Effect of α- and γ-polymorphs of glycine on the intranasal delivery of manganese hydroxide nanoparticles into brain structures. Doklady Biochemistry and Biophysics, 2014, 454, 6-9.	0.9	4
246	Bimetallic Pd—Pt/γ-Al2O3 catalysts for complete methane oxidation: the effect of the Pt: Pd ratio. Russian Chemical Bulletin, 2015, 64, 2802-2805.	1.5	4
247	Effect of the composition of the reaction atmosphere on the thermal stability of highly dispersed gold particles on an oxide support (Au/Al2O3 system). Kinetics and Catalysis, 2016, 57, 831-839.	1.0	4
248	Thermal stability of Ag–Au, Cu–Au, and Ag–Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite. Kinetics and Catalysis, 2016, 57, 704-711.	1.0	4
249	Nitrogen-doped alumina carrier for sintering resistant gold supported catalysts. Mendeleev Communications, 2018, 28, 601-602.	1.6	4
250	Using Sr-XPS to Study the Preparation Features of M-Au/HOPG Model Catalysts (M = Pd, Ag, Cu). Journal of Structural Chemistry, 2019, 60, 45-52.	1.0	4
251	Multilayer adsorption of methanol on platinum at low temperatures. Applied Surface Science, 2021, 535, 147717.	6.1	4
252	Effect of mechanical activation on the reactivity of powder copper. Inorganic Materials, 2005, 41, 110-119.	0.8	3

#	Article	IF	CITATIONS
253	Mathematical modeling of self-oscillations in ethane oxidation over nickel. Kinetics and Catalysis, 2016, 57, 113-124.	1.0	3
254	Scientific Heritage of Georgii Konstantinovich Boreskov. Kinetics and Catalysis, 2019, 60, 123-136.	1.0	3
255	Effect of Mono-, Di-, and Triethylene Glycol on the Sulfidation Behavior of NiMo(P)/Al2O3 Hydrotreating Catalysts. Catalysis Letters, 2019, 149, 3304-3311.	2.6	3
256	Aqueousâ€Phase Oxidation of <i>N</i> ‣ubstituted <i>N</i> â€PhosphonomethylGlycines into Glyphosate with Hydrogen Peroxide in the Presence of Carbon‣upported Gold Catalysts. ChemistrySelect, 2019, 4, 10756-10764.	1.5	3
257	An XPS Study of the Interaction of Rhodium Foil with NO2. Kinetics and Catalysis, 2019, 60, 823-831.	1.0	3
258	Bridging the Gap: From Homogeneous to Heterogeneous Parahydrogenâ€induced Hyperpolarization and Beyond. ChemPhysChem, 2021, 22, 710-715.	2.1	3
259	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.9	3
260	Mechanism of H2-promoted oxidation of nitrogen monoxide over Ag/Al2O3. Mendeleev Communications, 2011, 21, 274-276.	1.6	2
261	Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air. Biology Bulletin Reviews, 2015, 5, 36-45.	0.9	2
262	Kinetika i Kataliz: 55 years in the bibliometric dimension. Kinetics and Catalysis, 2016, 57, 1-16.	1.0	2
263	Frontispiece: NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, .	3.3	2
264	Deposition of [Ir(COD)(IMes)Cl] complex on the HOPG surface by means of evaporation in vacuum. Surfaces and Interfaces, 2021, 25, 101176.	3.0	2
265	Room-Temperature Interaction of Nitrogen Dioxide with Rhodium Nanoparticles Supported on the Surface of Highly Oriented Pyrolytic Graphite (HOPG). Kinetics and Catalysis, 2021, 62, 664-674.	1.0	2
266	XPS study of ethylene adsorption on Ir (110). Reaction Kinetics and Catalysis Letters, 1991, 43, 99-105.	0.6	1
267	Catalyst Structure - Performance Trends for Sibunit Carbon Based Cathodes for Proton Exchange Membrane Fuel Cells. ECS Transactions, 2009, 25, 1909-1913.	0.5	1
268	Geological and biological aspects of a find of natural alloy (Au-Cu-Ag) nanoparticles in Cenozoic zeolitized tuff of the Vanchinskaya basin (Primor'e Area). Doklady Earth Sciences, 2011, 436, 55-57.	0.7	1
269	NMR Hyperpolarization Techniques of Gases. Chemistry - A European Journal, 2017, 23, 724-724.	3.3	1
270	Effect of the Composition of the Reaction Atmosphere on the Thermal Stability of Highly Dispersed Gold Particles on an Oxide Support (Au/Fe2O3 System). Kinetics and Catalysis, 2017, 58, 809-815.	1.0	1

#	Article	IF	CITATIONS
271	Changes in the Spatial Distribution of Metals Under the Influence of Reaction Medium in the System Formed by a Gold Film Supported on the Surface of a Silver Foil. Journal of Structural Chemistry, 2019, 60, 1773-1782.	1.0	1
272	XPS Analysis of the Spacial Distribution of Metals in Au-Ag Bimetallic Particles Considering the Effect of Particle Size Distribution. Journal of Structural Chemistry, 2020, 61, 20-28.	1.0	1
273	Self-sustained Oscillations in Oxidation of Propane Over Nickel: Experimental Study and Mathematical Modelling. Topics in Catalysis, 2020, 63, 33-48.	2.8	1
274	SRPES and STM data for the model bimetallic Pd-In/HOPG catalysts: Effects of mild post-synthesis oxidative treatments. Data in Brief, 2021, 39, 107626.	1.0	1
275	Silicon carbon nitride films as new materials obtained by plasma chemical vapor deposition from novel precursor. , 2001, 4467, 366.		0
276	Effect of Mechanical Treatment on the Reactivity of Copper Powder toward Acetic Acid. Kinetics and Catalysis, 2005, 46, 565-571.	1.0	0
277	VII Russian Conference on Mechanisms of Catalytic Reactions (with international participation). Kinetics and Catalysis, 2007, 48, 457-463.	1.0	0
278	Uptake of palladium nanoparticles by epithelial MDCK cells and peritoneal macrophages. Nanotechnologies in Russia, 2014, 9, 707-714.	0.7	0
279	Frontispiece: Parahydrogenâ€Induced Polarization of Diethyl Ether Anesthetic. Chemistry - A European Journal, 2020, 26, .	3.3	0