
## Ana LuÃ-sa Maulvault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279709/publications.pdf Version: 2024-02-01



ΔΝΑΙΠΑΩΑ ΜΑΠΙΛΑΠΤ

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environmental Research, 2015, 143, 56-64.                                                                        | 7.5 | 206       |
| 2  | Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food and Chemical Toxicology, 2011, 49, 2808-2815.                                                                                                                | 3.6 | 98        |
| 3  | Effect of warming on protein, glycogen and fatty acid content of native and invasive clams. Food<br>Research International, 2014, 64, 439-445.                                                                                                     | 6.2 | 81        |
| 4  | Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis).<br>Environmental Pollution, 2018, 236, 824-834. | 7.5 | 72        |
| 5  | Co-occurrence of musk fragrances and UV-filters in seafood and macroalgae collected in European hotspots. Environmental Research, 2015, 143, 65-71.                                                                                                | 7.5 | 69        |
| 6  | Toxic elements and speciation in seafood samples from different contaminated sites in Europe.<br>Environmental Research, 2015, 143, 72-81.                                                                                                         | 7.5 | 66        |
| 7  | Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Science of the Total Environment, 2018, 618, 388-398.                                                | 8.0 | 59        |
| 8  | Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chemistry, 2012, 133, 277-283.                                                                                                                                         | 8.2 | 58        |
| 9  | Effects of depuration on metal levels and health status of bivalve molluscs. Food Control, 2015, 47, 493-501.                                                                                                                                      | 5.5 | 58        |
| 10 | Ecophysiological responses of juvenile seabass (Dicentrarchus labrax) exposed to increased<br>temperature and dietary methylmercury. Science of the Total Environment, 2017, 586, 551-558.                                                         | 8.0 | 58        |
| 11 | Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. Aquatic Toxicology, 2018, 202, 65-79.                                                                                               | 4.0 | 58        |
| 12 | Bioaccumulation and elimination of mercury in juvenile seabass ( Dicentrarchus labrax ) in a warmer<br>environment. Environmental Research, 2016, 149, 77-85.                                                                                      | 7.5 | 57        |
| 13 | Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius). Science of the Total Environment, 2018, 634, 1136-1147.                                                         | 8.0 | 57        |
| 14 | Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chemistry, 2018, 267, 15-27.                                                                                | 8.2 | 56        |
| 15 | Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit<br>associated to the consumption of raw and cooked blue shark (Prionace glauca). Environmental<br>Research, 2015, 143, 123-129.                    | 7.5 | 55        |
| 16 | Consumers' health risk–benefit perception of seafood and attitude toward the marine environment:<br>Insights from five European countries. Environmental Research, 2015, 143, 11-19.                                                               | 7.5 | 55        |
| 17 | Preliminary assessment on the bioaccessibility of contaminants of emerging concern in raw and cooked seafood. Food and Chemical Toxicology, 2017, 104, 69-78.                                                                                      | 3.6 | 53        |
| 18 | Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in<br>Catalonia (Spain) and health risks for the consumers. Food and Chemical Toxicology, 2015, 86, 34-40.                                            | 3.6 | 43        |

| #  | Article                                                                                                                                                                                                                                                         | IF                | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 19 | Living in a multi-stressors environment: An integrated biomarker approach to assess the<br>ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification.<br>Environmental Research, 2019, 169, 7-25.                      | 7.5               | 39           |
| 20 | Physiological responses to depuration and transport of native and exotic clams at different temperatures. Aquaculture, 2013, 408-409, 136-146.                                                                                                                  | 3.5               | 36           |
| 21 | Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves. Environmental Research, 2018, 161, 236-247.                                                                                   | 7.5               | 33           |
| 22 | Effects of steaming on contaminants of emerging concern levels in seafood. Food and Chemical Toxicology, 2018, 118, 490-504.                                                                                                                                    | 3.6               | 33           |
| 23 | InÂvitro bioaccessibility of the marine biotoxin okadaic acid in shellfish. Food and Chemical Toxicology, 2016, 89, 54-59.                                                                                                                                      | 3.6               | 30           |
| 24 | Different tools to trace geographic origin and seasonality of croaker (Micropogonias furnieri). LWT -<br>Food Science and Technology, 2015, 61, 194-200.                                                                                                        | 5.2               | 28           |
| 25 | Ecophysiology of native and alien-invasive clams in an ocean warming context. Comparative<br>Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 175, 28-37.                                                                          | 1.8               | 26           |
| 26 | Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification. Environmental Pollution, 2019, 245, 427-442.                                                                       | 7.5               | 26           |
| 27 | Risk–benefit assessment of cooked seafood: Black scabbard fish (Aphanopus carbo) and edible crab<br>(Cancer pagurus) as case studies. Food Control, 2013, 32, 518-524.                                                                                          | 5.5               | 25           |
| 28 | Fish energy budget under ocean warming and flame retardant exposure. Environmental Research, 2018,<br>164, 186-196.                                                                                                                                             | 7.5               | 24           |
| 29 | Antidepressants in a changing ocean: Venlafaxine uptake and elimination in juvenile fish (Argyrosomus) Tj ETQq1                                                                                                                                                 | 1,0,7843<br>8.2   | 14.rgBT /Ove |
| 30 | Temporal dynamics of amino and fatty acid composition in the razor clam Ensis siliqua (Mollusca:) Tj ETQq0 0 0 r                                                                                                                                                | gBT /Overl<br>1.3 | ock 10 Tf 50 |
| 31 | Polycyclic aromatic hydrocarbons bioaccessibility in seafood: Culinary practices effects on dietary exposure. Environmental Research, 2018, 164, 165-172.                                                                                                       | 7.5               | 20           |
| 32 | Habitat selection disruption and lateralization impairment of cryptic flatfish in a warm, acid, and contaminated ocean. Marine Biology, 2016, 163, 1.                                                                                                           | 1.5               | 19           |
| 33 | Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood: An in vitro digestion approach. Food and Chemical Toxicology, 2019, 129, 153-161.                                                                                                   | 3.6               | 18           |
| 34 | Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed<br>gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) fillets elemental nutritional<br>value. Food and Chemical Toxicology, 2020, 140, 111330. | 3.6               | 18           |
| 35 | Chemometrics tools to distinguish wild and farmed meagre ( <i>Argyrosomus regius</i> ). Journal of<br>Food Processing and Preservation, 2017, 41, e13312.                                                                                                       | 2.0               | 16           |
| 36 | Effect of sex, maturation stage and cooking methods on the nutritional quality and safety of black<br>scabbard fish (Aphanopus carbo Lowe, 1839). Journal of the Science of Food and Agriculture, 2012, 92,<br>1545-1553.                                       | 3.5               | 15           |

| #  | Article                                                                                                                                                                                                                  | IF       | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 37 | Mercury in Juvenile Solea senegalensis: Linking Bioaccumulation, Seafood Safety, and Neuro-Oxidative<br>Responses under Climate Change-Related Stressors. Applied Sciences (Switzerland), 2020, 10, 1993.                | 2.5      | 15           |
| 38 | Microbiological responses to depuration and transport of native and exotic clams at optimal and stressful temperatures. Food Microbiology, 2013, 36, 365-373.                                                            | 4.2      | 13           |
| 39 | Insights on the metabolization of the antidepressant venlafaxine by meagre (Argyrosomus regius)<br>using a combined target and suspect screening approach. Science of the Total Environment, 2020, 737,<br>140226.       | 8.0      | 13           |
| 40 | Green tea infusion reduces mercury bioaccessibility and dietary exposure from raw and cooked fish.<br>Food and Chemical Toxicology, 2020, 145, 111717.                                                                   | 3.6      | 12           |
| 41 | Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals?.<br>Food and Chemical Toxicology, 2020, 136, 110978.                                                                | 3.6      | 11           |
| 42 | Will seabass ( Dicentrarchus labrax ) quality change in a warmer ocean?. Food Research International, 2017, 97, 27-36.                                                                                                   | 6.2      | 9            |
| 43 | Impact of a simulated marine heatwave in the hematological profile of a temperate shark (Scyliorhinus) Tj ETQq1                                                                                                          | 1 0.7843 | 14 rgBT /Ove |
| 44 | Paralytic Shellfish Toxins and Ocean Warming: Bioaccumulation and Ecotoxicological Responses in<br>Juvenile Gilthead Seabream (Sparus aurata). Toxins, 2019, 11, 408.                                                    | 3.4      | 8            |
| 45 | First indication of deleterious impacts in white-seabream larvae (Diplodus sargus) survival and behaviour following acute venlafaxine exposure. Ecotoxicology, 2019, 28, 612-618.                                        | 2.4      | 8            |
| 46 | Effects of steaming on health-valuable nutrients from fortified farmed fish: Gilthead seabream<br>(Sparus aurata) and common carp (Cyprinus carpio) as case studies. Food and Chemical Toxicology,<br>2021, 152, 112218. | 3.6      | 7            |
| 47 | Future challenges in seafood chemical hazards: Research and infrastructure needs. Trends in Food<br>Science and Technology, 2019, 84, 52-54.                                                                             | 15.1     | 6            |
| 48 | Shellfish: Characteristics of Crustaceans and Mollusks. , 2016, , 764-771.                                                                                                                                               |          | 5            |
| 49 | Effects of elevated carbon dioxide on the hematological parameters of a temperate catshark. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 126-132.                           | 1.9      | 5            |
| 50 | Amino acids in the octocoralVeretillum cynomorium: the effect of seasonality and differences from scleractinian hexacorals. Journal of the Marine Biological Association of the United Kingdom, 2013, 93, 913-918.       | 0.8      | 2            |
| 51 | Determination of target biogenic amines in fish by GC-MS: investigating seafood quality. Annals of Medicine, 2024, 51, 73-73.                                                                                            | 3.8      | 2            |
| 52 | Shellfish: Role in the diet. , 2016, , 772-778.                                                                                                                                                                          |          | 0            |
| 53 | Assessment of fish quality: the Quality Index Method <i>versus</i> HPLC analysis in <i>Sarda sarda</i> (Bloch, 1793). Annals of Medicine, 2024, 51, 74-74.                                                               | 3.8      | 0            |
| 54 | Biological effects of antidepressants on marine organisms. , 2021, , 563-590.                                                                                                                                            |          | 0            |

## IF CITATIONS

55 Chemical Contaminants in a Changing Ocean. , 2019, , 25-41.

ARTICLE

#