Errol Samuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279616/publications.pdf Version: 2024-02-01

EDDOL SAMUEL

#	Article	IF	CITATIONS
1	Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Scientific Reports, 2021, 11, 1121.	3.3	14
2	Design and construction of a stereochemically diverse piperazine-based DNA-encoded chemical library. Bioorganic and Medicinal Chemistry, 2021, 48, 116387.	3.0	9
3	Processing binding data using an open-source workflow. Journal of Cheminformatics, 2021, 13, 99.	6.1	6
4	Highly Oxidized Graphene Quantum Dots from Coal as Efficient Antioxidants. ACS Applied Materials & Interfaces, 2019, 11, 16815-16821.	8.0	61
5	Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival from Lethal Fractionated Radiation. Scientific Reports, 2019, 9, 1949.	3.3	13
6	Characterization of a novel MRâ€detectable nanoantioxidant that mitigates the recall immune response. NMR in Biomedicine, 2016, 29, 1436-1444.	2.8	5
7	Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Scientific Reports, 2016, 6, 33808.	3.3	32
8	Mechanistic Study of the Conversion of Superoxide to Oxygen and Hydrogen Peroxide in Carbon Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 15086-15092.	8.0	43
9	Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. , 2016, 7, 75.		34
10	Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2343-2348.	7.1	173
11	Asphalt-Derived High Surface Area Activated Porous Carbons for Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2015, 7, 1376-1382.	8.0	108
12	Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 3414-3419.	8.0	352
13	Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 7041-7048.	8.0	182
14	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 8083-8087.	8.0	180
15	Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6, 8668.	12.8	1,356
16	The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell–dependent emphysema. Nature Immunology, 2015, 16, 1185-1194.	14.5	91
17	Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema. ELife, 2015, 4, e09623	6.0	59
18	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	12.8	1,645

Errol Samuel

#	Article	IF	CITATIONS
19	Rebar Graphene. ACS Nano, 2014, 8, 5061-5068.	14.6	178
20	Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for Highâ€Performance Liâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 2044-2048.	14.9	156
21	Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Research, 2014, 7, 502-510.	10.4	102
22	Enhanced Cycling Stability of Lithium Sulfur Batteries Using Sulfur–Polyaniline–Graphene Nanoribbon Composite Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 15033-15039.	8.0	80
23	Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends in Biotechnology, 2014, 32, 501-505.	9.3	34
24	Carbon-Based Nanoreporters Designed for Subsurface Hydrogen Sulfide Detection. ACS Applied Materials & Interfaces, 2014, 6, 7652-7658.	8.0	26
25	Large Hexagonal Bi―and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-1569.	13.8	82
26	Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material. ACS Applied Materials & Interfaces, 2014, 6, 16661-16668.	8.0	23
27	Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano, 2014, 8, 10837-10843.	14.6	396
28	LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chemical Communications, 2014, 50, 7117.	4.1	47
29	Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Applied Materials & Interfaces, 2013, 5, 6622-6627.	8.0	171
30	Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances. ACS Nano, 2013, 7, 10380-10386.	14.6	124
31	Coal as an abundant source of graphene quantum dots. Nature Communications, 2013, 4, 2943.	12.8	686
32	Calculating the Hydrodynamic Volume of Poly(ethylene oxylated) Single-Walled Carbon Nanotubes and Hydrophilic Carbon Clusters. Journal of Physical Chemistry B, 2013, 117, 343-354.	2.6	23
33	Hexagonal Graphene Onion Rings. Journal of the American Chemical Society, 2013, 135, 10755-10762.	13.7	31
34	Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy and Environmental Science, 2012, 5, 8304.	30.8	42
35	Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene. ACS Nano, 2012, 6, 9790-9796.	14.6	163
36	Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 2012, 6, 9110-9117.	14.6	537

_	~
FPPOL	SAMILEI
LKKOL	JAMULL

#	Article	IF	CITATIONS
37	Cucurbituril Slippage: Translation is a Complex Motion. Organic Letters, 2010, 12, 2730-2733.	4.6	38