
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 2006, 442, 920-924.	13.7	1,386
2	TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Science Translational Medicine, 2014, 6, 243ra86.	5.8	600
3	A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology, The, 2012, 11, 54-65.	4.9	565
4	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	9.4	479
5	Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathologica, 2013, 126, 881-893.	3.9	427
6	Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain, 2008, 131, 732-746.	3.7	331
7	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
8	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	1.1	247
9	Mutations in DNAJC5, Encoding Cysteine-String Protein Alpha, Cause Autosomal-Dominant Adult-Onset Neuronal Ceroid Lipofuscinosis. American Journal of Human Genetics, 2011, 89, 241-252.	2.6	236
10	ALS Genes in the Genomic Era and their Implications for FTD. Trends in Genetics, 2018, 34, 404-423.	2.9	229
11	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	3.9	222
12	Serum biomarker for progranulinâ€associated frontotemporal lobar degeneration. Annals of Neurology, 2009, 65, 603-609.	2.8	195
13	Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Human Molecular Genetics, 2010, 19, 2228-2238.	1.4	163
14	Progranulin null mutations in both sporadic and familial frontotemporal dementia. Human Mutation, 2007, 28, 846-855.	1.1	162
15	The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum. Annals of Medicine, 2012, 44, 817-828.	1.5	157
16	Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathologica, 2014, 127, 845-60.	3.9	156
17	Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends in Neurosciences, 2013, 36, 450-459.	4.2	151
18	Loss of <i>TBK1</i> is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology, 2015, 85, 2116-2125.	1.5	151

#	Article	IF	CITATIONS
19	Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Archives of Neurology, 2007, 64, 1436.	4.9	143
20	CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Human Molecular Genetics, 2008, 17, 313-322.	1.4	131
21	Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4986-4991.	3.3	126
22	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	3.9	123
23	A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in <i>C9orf72</i> reveals marked differences in results among 14 laboratories. Journal of Medical Genetics, 2014, 51, 419-424.	1.5	118
24	Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Human Mutation, 2007, 28, 416-416.	1.1	116
25	Relationship between C9orf72 repeat size and clinical phenotype. Current Opinion in Genetics and Development, 2017, 44, 117-124.	1.5	114
26	TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain, 2011, 134, 808-815.	3.7	110
27	Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiology of Disease, 2020, 134, 104639.	2.1	101
28	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	3.9	93
29	A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain, 2006, 129, 841-852.	3.7	88
30	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	1.1	87
31	Clinical features of <i>TBK1</i> carriers compared with <i>C9orf72</i> , <i>GRN</i> and non-mutation carriers in a Belgian cohort. Brain, 2016, 139, 452-467.	3.7	86
32	Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. JAMA Neurology, 2013, 70, 365.	4.5	85
33	A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathologica, 2016, 132, 213-224.	3.9	83
34	Genomic architecture of human 17q21 linked to frontotemporal dementia uncovers a highly homologous family of low-copy repeats in the tau region. Human Molecular Genetics, 2005, 14, 1753-1762.	1.4	82
35	Genotype–phenotype links in frontotemporal lobar degeneration. Nature Reviews Neurology, 2018, 14, 363-378.	4.9	68
36	Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiology of Aging, 2009, 30, 1329-1331.	1.5	67

#	Article	IF	CITATIONS
37	Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiology of Aging, 2017, 51, 177.e9-177.e16.	1.5	60
38	Invited Article: The Alzheimer disease–frontotemporal lobar degeneration spectrum. Neurology, 2008, 71, 1191-1197.	1.5	59
39	A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain, 2007, 130, 2277-2291.	3.7	56
40	Clinical Evidence of Disease Anticipation in Families Segregating a <i>C9orf72</i> Repeat Expansion. JAMA Neurology, 2017, 74, 445.	4.5	56
41	Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathologica, 2017, 134, 475-487.	3.9	53
42	A novel CHCHD10 mutation implicates a Mia40â€dependent mitochondrial import deficit in ALS. EMBO Molecular Medicine, 2018, 10, .	3.3	43
43	No association of PGRN 3′UTR rs5848 in frontotemporal lobar degeneration. Neurobiology of Aging, 2011, 32, 754-755.	1.5	42
44	Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimer's Research and Therapy, 2018, 10, 31.	3.0	42
45	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39
46	Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. Acta Neuropathologica, 2019, 137, 901-918.	3.9	37
47	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	1.5	35
48	Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiology of Aging, 2015, 36, 2005.e15-2005.e22.	1.5	34
49	NEK1 genetic variability in a Belgian cohort of ALS and ALS-FTD patients. Neurobiology of Aging, 2018, 61, 255.e1-255.e7.	1.5	32
50	TMEM106B a Novel Risk Factor for Frontotemporal Lobar Degeneration. Journal of Molecular Neuroscience, 2011, 45, 516-521.	1.1	26
51	Clinicopathological description of two cases with <i>SQSTM1</i> gene mutation associated with frontotemporal dementia. Neuropathology, 2016, 36, 27-38.	0.7	26
52	Modifiers of GRN -Associated Frontotemporal Lobar Degeneration. Trends in Molecular Medicine, 2017, 23, 962-979.	3.5	26
53	Frontotemporal lobar degeneration—building on breakthroughs. Nature Reviews Neurology, 2014, 10, 70-72.	4.9	25
54	A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function. Neurobiology of Aging, 2015, 36, 3171-3175.	1.5	24

#	Article	IF	CITATIONS
55	Rare Variants in <i>PLD3</i> Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort. Human Mutation, 2015, 36, 1226-1235.	1.1	23
56	Familial primary lateral sclerosis or dementia associated with Arg573Gly <i>TBK1</i> mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 996-997.	0.9	23
57	Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions: A Molecular Genetic Update. Neurodegenerative Diseases, 2007, 4, 227-235.	0.8	21
58	Mutated <i>CTSF</i> in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurology: Genetics, 2016, 2, e102.	0.9	21
59	Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiology of Aging, 2018, 66, 181.e3-181.e10.	1.5	19
60	Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends in Genetics, 2022, 38, 258-272.	2.9	19
61	Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis. Neurobiology of Aging, 2018, 69, 292.e7-292.e14.	1.5	18
62	Systematic Screening of Ubiquitin/p62 Aggregates in Cerebellar Cortex Expands the Neuropathological Phenotype of the C9orf72 Expansion Mutation. Journal of Neuropathology and Experimental Neurology, 2018, 77, 703-709.	0.9	18
63	Clinical variability and onset age modifiers in an extended Belgian GRN founder family. Neurobiology of Aging, 2018, 67, 84-94.	1.5	17
64	Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 2018, 62, 245.e1-245.e7.	1.5	16
65	Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Medicine, 2021, 13, 59.	3.6	16
66	No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients. Neurobiology of Aging, 2018, 69, 293.e9-293.e11.	1.5	15
67	Visualization ofMAPT inversion on stretched chromosomes of tau-negative frontotemporal dementia patients. Human Mutation, 2006, 27, 1057-1059.	1.1	14
68	Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathologica Communications, 2015, 3, 68.	2.4	13
69	EEG Dominant Frequency Peak Differentiates Between Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2016, 55, 53-58.	1.2	13
70	Genetic Alzheimer Disease and Sporadic Dementia With Lewy Bodies: A Comorbidity Presenting as Primary Progressive Aphasia. Cognitive and Behavioral Neurology, 2017, 30, 23-29.	0.5	13
71	Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 70-72.	1.1	11
72	Characterization of an FTLD-PDB family with the coexistence of SQSTM1 mutation and hexanucleotide (G 4 C 2) repeat expansion in C9orf72 gene. Neurobiology of Aging, 2016, 40, 191.e1-191.e8.	1.5	11

#	Article	IF	CITATIONS
73	No added diagnostic value of non-phosphorylated tau fraction (p-taurel) in CSF as a biomarker for differential dementia diagnosis. Alzheimer's Research and Therapy, 2017, 9, 49.	3.0	11
74	Extended FTLD pedigree segregating a Belgian GRN-null mutation: neuropathological heterogeneity in one family. Alzheimer's Research and Therapy, 2018, 10, 7.	3.0	10
75	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
76	Neuroimaging Correlates of Frontotemporal Dementia Associated with SQSTM1 Mutations. Journal of Alzheimer's Disease, 2016, 53, 303-313.	1.2	8
77	Presence of tau astrogliopathy in frontotemporal dementia caused by a novel Grn nonsense (Trp2*) mutation. Neurobiology of Aging, 2019, 76, 214.e11-214.e15.	1.5	8
78	Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia. Neurobiology of Aging, 2021, 99, 99.e15-99.e22.	1.5	8
79	Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer's disease. Neurobiology of Aging, 2021, 104, 105.e1-105.e6.	1.5	8
80	Investigating the Endo-Lysosomal System in Major Neurocognitive Disorders Due to Alzheimer's Disease, Frontotemporal Lobar Degeneration and Lewy Body Disease: Evidence for SORL1 as a Cross-Disease Gene. International Journal of Molecular Sciences, 2021, 22, 13633.	1.8	8
81	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
82	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	3.7	7
83	Sporadic Creutzfeldt-Jakob Disease and Other Proteinopathies in Comorbidity. Frontiers in Neurology, 2020, 11, 596108.	1.1	6
84	Frontotemporal Lobar Degeneration Case with an N-Terminal TUBA4A Mutation Exhibits Reduced TUBA4A Levels in the Brain and TDP-43 Pathology. Biomolecules, 2022, 12, 440.	1.8	5
85	No association of CpG SNP rs9357140 with onset age in Belgian C9orf72 repeat expansion carriers. Neurobiology of Aging, 2021, 97, 145.e1-145.e4.	1.5	2
86	Family-based exome sequencing identifies RBM45 as a possible candidate gene for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiology of Disease, 2021, 156, 105421.	2.1	2
87	Protein interaction network analysis reveals genetic enrichment of immune system genes in frontotemporal dementia. Neurobiology of Aging, 2022, 116, 67-79.	1.5	2
88	[P4–075]: THE <i>MAPT</i> P.ARG406TRP IS A FOUNDER MUTATION IN BELGIUM AND PRESENTS WITH AN ALZHEIMER DISEASE DEMENTIA‣IKE PHENOTYPE. Alzheimer's and Dementia, 2017, 13, P1286.	0.4	1
89	Genetic variants in progranulin upstream open reading frames increase downstream protein expression. Neurobiology of Aging, 2022, 110, 113-121.	1.5	1
90	How network-based approaches can complement gene identification studies in frontotemporal dementia. Trends in Genetics, 2022, 38, 944-955.	2.9	1

#	Article	IF	CITATIONS
91	O3-13-03: Massive parallel gene panel sequencingÂin a belgian ftld cohort of causal genes associated with diverse neurodegenerative brain diseases. , 2015, 11, P251-P251.		0
92	O3-13-06: Targeted re-sequencing of sorl1 in early-onset Alzheimer's dementia: The european early onset dementia consortium. , 2015, 11, P253-P253.		0
93	P1â€176: CSF Exploratory Biomarker Study for (DIFFERENTIAL) Diagnosis of Frontotemporal Lobar Degeneration. Alzheimer's and Dementia, 2016, 12, P471.	0.4	0
94	P2-153: Diagnostic Performance of Non-Phosphorylated TAU Fraction (PTAU REL) in CSF as Biomarker for Differential Dementia Diagnosis. , 2016, 12, P672-P673.		0
95	P4â€120: Increased CSF Levels of Biomarkers for Neurodegeneration in FTLDâ€GRN Mutation Carriers. Alzheimer's and Dementia, 2016, 12, P1058.	0.4	0
96	O4â€09â€03: Eeg Dominant Frequency Peak Differentiates Between Alzheimer's Disease and Frontotemporal Lobar Degeneration. Alzheimer's and Dementia, 2016, 12, P354.	0.4	0
97	[P4–071]: EXOME SEQUENCING IN ATYPICAL FRONTOTEMPORAL DEMENTIA WITH PERIâ€ROLANDIC ATROPHY SUGGESTS A ROLE FOR MATRIX METALLOPROTEINASES IN FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1285.	, 0.4	0
98	[P4–069]: A PROSPECTIVE NEUROGENETIC STUDY ON EARLYâ€ONSET DEMENTIA IN PATIENTS WITH UNCLEAR INITIAL DIAGNOSIS OF DEGENERATIVE DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1284.	0.4	0
99	[P4–070]: NEK1 GENETIC VARIABILITY IN A BELGIAN COHORT OF ALS AND FTDâ€ALS PATIENTS. Alzheimer's and Dementia, 2017, 13, P1284.	^d 0.4	0
100	[O2–13–05]: DELETERIOUS <i>ABCA7</i> MUTATIONS CONTRIBUTE TO EARLYâ€ONSET ALZHEIMER's DISEA AND ARE SUBJECT TO TRANSCRIPT RESCUE MECHANISMS. Alzheimer's and Dementia, 2017, 13, P589.	SE 0.4	0
101	P3â€121: RARE FRAMESHIFT AND DIGENIC MUTATIONS CONTRIBUTE TO DISEASE ETIOLOGY IN BELGIAN ALZHEIMER AND FRONTOTEMPORAL DEMENTIA PATIENTS. Alzheimer's and Dementia, 2018, 14, P1113.	0.4	0
102	P3â€111: EVALUATING THE GENETIC IMPACT OF <i>TIA1</i> GENE MUTATIONS IN A EUROPEAN COHORT OF ALSâ€FTD SPECTRUM PATIENTS. Alzheimer's and Dementia, 2018, 14, P1110.	0.4	0
103	P3â€128: EXPLORING THE MOLECULAR MECHANISM OF NEURONAL HYPEREXCITABILITY IN DEMENTIA. Alzheimer's and Dementia, 2018, 14, P1116.	0.4	0
104	Three upstream ORFs in an alternative GRN 5′UTR influence downstream protein expression. Alzheimer's and Dementia, 2020, 16, e038282.	0.4	0
105	Exploration of the endoâ€lysosomal pathway genes in frontotemporal dementia: The use of proteinâ€protein interaction networks to prioritize rareâ€variant association analysis results. Alzheimer's and Dementia, 2020, 16, e043624	0.4	0