
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279081/publications.pdf Version: 2024-02-01

IAESOOK YUN

#	Article	IF	CITATIONS
1	Copper-catalysed asymmetric reductive cross-coupling of prochiral alkenes. Nature Communications, 2022, 13, 2570.	12.8	6
2	Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angewandte Chemie, 2021, 133, 4664-4668.	2.0	2
3	Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angewandte Chemie - International Edition, 2021, 60, 4614-4618.	13.8	12
4	Kinetic Resolution and Dynamic Kinetic Resolution of γâ€Arylâ€Substituted Butenolides via Copperâ€Catalyzed 1,4â€Hydroboration. Advanced Synthesis and Catalysis, 2021, 363, 2377-2381.	4.3	2
5	Enantioselective Cyclopropanation/[1,5]-Hydrogen Shift to Access Rauhut–Currier Product. Organic Letters, 2021, 23, 213-217.	4.6	8
6	Divergent Access to Benzocycles through Copper atalyzed Borylative Cyclizations. Advanced Synthesis and Catalysis, 2021, 363, 4953-4959.	4.3	5
7	Direct Stereoconvergent Allylation of Chiral Alkylcopper Nucleophiles with Racemic Allylic Phosphates. Chemistry - A European Journal, 2020, 26, 2592-2596.	3.3	8
8	Asymmetric Synthesis of 1,2-Dihydronaphthalene-1-ols via Copper-Catalyzed Intramolecular Reductive Cyclization. Organic Letters, 2020, 22, 7897-7902.	4.6	13
9	Asymmetric synthesis of γ-chiral borylalkanes via sequential reduction/hydroboration using a single copper catalyst. Chemical Science, 2020, 11, 8961-8965.	7.4	4
10	LiO <i>t</i> Bu-promoted stereoselective deconjugation of α,β-unsaturated diesters probed using density functional theory. Organic Chemistry Frontiers, 2020, 7, 3427-3433.	4.5	4
11	Pd-Catalyzed Stereospecific Cross-Coupling of Chiral α-Borylalkylcopper Species with Aryl Bromides. ACS Catalysis, 2020, 10, 2069-2073.	11.2	28
12	Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents. Journal of Nanoscience and Nanotechnology, 2020, 20, 7151-7157.	0.9	11
13	Asymmetric synthesis of α-chiral β-hydroxy allenes: copper-catalyzed γ-selective borylative coupling of vinyl arenes and propargyl phosphates. Chemical Communications, 2019, 55, 9813-9816.	4.1	14
14	Copper-Catalyzed Asymmetric Reduction of β,β-Disubstituted Alkenylboramides. Organic Letters, 2019, 21, 8779-8782.	4.6	8
15	Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angewandte Chemie - International Edition, 2019, 58, 18131-18135.	13.8	34
16	Asymmetric Synthesis of 1-Benzazepine Derivatives via Copper-Catalyzed Intramolecular Reductive Cyclization. Organic Letters, 2019, 21, 9699-9703.	4.6	22
17	Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angewandte Chemie, 2019, 131, 18299-18303.	2.0	5
18	NHC-copper-thiophene-2-carboxylate complex for the hydroboration of terminal alkynes. Organic and Biomolecular Chemistry, 2019, 17, 5249-5252.	2.8	15

JAESOOK YUN

#	Article	lF	CITATIONS
19	Asymmetric Synthesis of γ-Hydroxy Pinacolboronates through Copper-Catalyzed Enantioselective Hydroboration of α,β-Unsaturated Aldehydes. Journal of Organic Chemistry, 2019, 84, 4429-4434.	3.2	13
20	Asymmetric synthesis of chiral tertiary borylated phosphonates by copper-catalyzed conjugate borylation. Tetrahedron, 2019, 75, 4250-4254.	1.9	5
21	Crystal Structure of IlvC, a Ketol-Acid Reductoisomerase, from Streptococcus Pneumoniae. Crystals, 2019, 9, 551.	2.2	5
22	Copperâ€Catalyzed Asymmetric Synthesis of Borylated <i>cis</i> â€Disubstituted Indolines. Chemistry - an Asian Journal, 2018, 13, 2365-2368.	3.3	27
23	Copper-Catalyzed Synthesis of Tetrasubstituted Enynylboronates via Chemo-, Regio-, and Stereoselective Borylalkynylation. Organic Letters, 2018, 20, 2104-2107.	4.6	29
24	Copper-Catalyzed Regioselective and Diastereoselective Synthesis of Borylated 1-Benzo[<i>b</i>]azepines. Organic Letters, 2018, 20, 7526-7529.	4.6	31
25	Copper(I)-Catalyzed Enantioselective 1,6-Borylation of α,β,γ,δ-Unsaturated Phosphonates. Organic Letters, 2018, 20, 7961-7964.	4.6	20
26	Copperâ€Catalyzed Tandem Hydrocupration and Diastereo―and Enantioselective Borylalkyl Addition to Aldehydes. Angewandte Chemie, 2018, 130, 12292-12296.	2.0	7
27	Copperâ€Catalyzed Tandem Hydrocupration and Diastereo―and Enantioselective Borylalkyl Addition to Aldehydes. Angewandte Chemie - International Edition, 2018, 57, 12116-12120.	13.8	30
28	Detection of Dimethyl Methylphosphonate (DMMP) Using Polyhedral Oligomeric Silsesquioxane (POSS). Journal of Nanoscience and Nanotechnology, 2018, 18, 6565-6569.	0.9	11
29	NHC-Copper-Catalyzed Tandem Hydrocupration and Allylation of Alkenyl Boronates. Synthesis, 2017, 49, 4753-4758.	2.3	18
30	Copper-Catalyzed Enantioselective Hydroboration of Unactivated 1,1-Disubstituted Alkenes. Journal of the American Chemical Society, 2017, 139, 13660-13663.	13.7	118
31	Highly Enantioselective Hydrosilylation of Ketones Catalyzed by a Chiral Oxazaborolidinium Ion. Organic Letters, 2017, 19, 6316-6319.	4.6	28
32	SAR Studies of Indole-5-propanoic Acid Derivatives To Develop Novel GPR40 Agonists. ACS Medicinal Chemistry Letters, 2017, 8, 1336-1340.	2.8	9
33	Copper-Catalyzed Asymmetric Borylallylation of Vinyl Arenes. Organic Letters, 2017, 19, 6144-6147.	4.6	48
34	Copper-Catalyzed trans-Hydroboration of Terminal Aryl Alkynes: Stereodivergent Synthesis of Alkenylboron Compounds. Organic Letters, 2016, 18, 1390-1393.	4.6	117
35	Copper-Catalyzed Asymmetric Borylative Ring Opening of Diazabicycles. ACS Catalysis, 2016, 6, 6487-6490.	11.2	27
36	Asymmetric Synthesis of Borylalkanes via Copper-Catalyzed Enantioselective Hydroallylation. Journal of the American Chemical Society, 2016, 138, 15146-15149.	13.7	88

#	Article	IF	CITATIONS
37	Rhodium atalyzed Addition of Alkyltrifluoroborate Salts to Imines. Advanced Synthesis and Catalysis, 2015, 357, 2219-2222.	4.3	14
38	Asymmetric Catalytic Borylation of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Acceptors. Topics in Organometallic Chemistry, 2015, , 73-92.	0.7	15
39	Regioselective synthesis of highly functionalized alkenylboronates by Cu-catalyzed borylation of propargylic silylalkynes. Dalton Transactions, 2015, 44, 12091-12093.	3.3	17
40	Highly Regio- and Stereoselective Synthesis of Boron-Substituted Enynes via Copper-Catalyzed Borylation of Conjugated Diynes. Organic Letters, 2015, 17, 860-863.	4.6	45
41	Copper(I)–Taniaphos Catalyzed Enantiodivergent Hydroboration of Bicyclic Alkenes. Organic Letters, 2015, 17, 764-766.	4.6	66
42	Origin of Regioselectivity in the Copper-Catalyzed Borylation Reactions of Internal Aryl Alkynes with Bis(pinacolato)diboron. Organometallics, 2015, 34, 2151-2159.	2.3	40
43	Copperâ€Catalyzed Synthesis of 1,1â€Diborylalkanes through Regioselective Dihydroboration of Terminal Alkynes. Chemistry - an Asian Journal, 2014, 9, 2440-2443.	3.3	63
44	Copperâ€Catalyzed Monoborylation of Silylalkynes; Regio―and Stereoselective Synthesis of (<i>Z</i>)â€Î²â€(Borylvinyl)silanes. Advanced Synthesis and Catalysis, 2014, 356, 843-849.	4.3	26
45	Effects of ligand and cosolvent on oxidative coupling polymerization of 2,6-dimethylphenol catalyzed by chelating amine-copper(II) complexes. Macromolecular Research, 2013, 21, 1054-1058.	2.4	1
46	Regio―and Enantioselective Copper(I) atalyzed Hydroboration of Borylalkenes: Asymmetric Synthesis of 1,1â€Diborylalkanes. Angewandte Chemie - International Edition, 2013, 52, 3989-3992.	13.8	217
47	Rh-catalyzed Addition of β-Carbonyl Pinacol Alkylboronates to Aldehydes: Asymmetric Synthesis of γ-Butyrolactones. Organic Letters, 2013, 15, 3416-3419.	4.6	31
48	Copper(I) atalyzed Boron Addition Reactions of Alkynes with Diboron Reagents. Asian Journal of Organic Chemistry, 2013, 2, 1016-1025.	2.7	123
49	Copper-Catalyzed Double Borylation of Silylacetylenes: Highly Regio- and Stereoselective Synthesis of <i>Syn</i> -Vicinal Diboronates. Organic Letters, 2012, 14, 2606-2609.	4.6	66
50	Copper-catalyzed boration of activated alkynes. Chiral boranes via a one-pot copper-catalyzed boration and reduction protocol. Tetrahedron, 2012, 68, 3444-3449.	1.9	54
51	Highly regio- and stereoselective synthesis of alkenylboronic esters by copper-catalyzed boron additions to disubstituted alkynes. Chemical Communications, 2011, 47, 2943-2945.	4.1	141
52	An Efficient Copper(I)â€Catalyst System for the Asymmetric Hydroboration of βâ€Substituted Vinylarenes with Pinacolborane. Chemistry - an Asian Journal, 2011, 6, 1967-1969.	3.3	104
53	Copper atalyzed Asymmetric 1,4â€Hydroboration of Coumarins with Pinacolborane: Asymmetric Synthesis of Dihydrocoumarins. Advanced Synthesis and Catalysis, 2010, 352, 1881-1885.	4.3	53
54	Conjugate Boration of β,βâ€Disubstituted Unsaturated Esters: Asymmetric Synthesis of Functionalized Chiral Tertiary Organoboronic Esters. Chemistry - A European Journal, 2010, 16, 13609-13612.	3.3	106

#	Article	IF	CITATIONS
55	Catalytic Activity of Phosphineâ^'Copper Complexes for Hydroboration of Styrene with Pinacolborane: Experiment and Theory. Journal of Physical Chemistry A, 2010, 114, 12112-12115.	2.5	30
56	Bis(imidazoline-2-thione)–copper(i) catalyzed regioselective boron addition to internal alkynes. Chemical Communications, 2010, 46, 758-760.	4.1	153
57	Copperâ€Catalyzed Conjugate Addition of Diboron Reagents to α,βâ€Unsaturated Amides: Highly Reactive Copperâ€1,2―Bis(diphenylphosphino)benzene Catalyst System. Advanced Synthesis and Catalysis, 2009, 351, 855-858.	4.3	145
58	Copperâ€Catalyzed Enantioselective βâ€Boration of Acyclic Enones. Chemistry - A European Journal, 2009, 15, 1939-1943.	3.3	157
59	Asymmetric Synthesis of 1,1â€Diarylalkyl Units by a Copper Hydride Catalyzed Reduction: Differentiation Between Two Similar Aryl Substituents. Chemistry - A European Journal, 2009, 15, 11134-11138.	3.3	49
60	Highly Regio―and Enantioselective Copperâ€Catalyzed Hydroboration of Styrenes. Angewandte Chemie - International Edition, 2009, 48, 6062-6064.	13.8	276
61	Highly Regio―and Enantioselective Copperâ€Catalyzed Hydroboration of Styrenes. Angewandte Chemie - International Edition, 2009, 48, 6938-6938.	13.8	1
62	Enantioselective Synthesis of (R)-Tolterodine via CuH-Catalyzed Asymmetric Conjugate Reduction. Journal of Organic Chemistry, 2009, 74, 4232-4235.	3.2	29
63	Catalytic enantioselective boron conjugate addition to cyclic carbonyl compounds: a new approach to cyclic β-hydroxy carbonyls. Chemical Communications, 2009, , 6577.	4.1	118
64	Catalytic Asymmetric Boration of Acyclic α,βâ€Unsaturated Esters and Nitriles. Angewandte Chemie - International Edition, 2008, 47, 145-147.	13.8	350
65	Inside Cover: Catalytic Asymmetric Boration of Acyclic α,βâ€Unsaturated Esters and Nitriles (Angew. Chem.) Tj E	ETQg 1 1 C).784314 rgB
66	Copper-catalyzed addition of diboron reagents to α,β-acetylenic esters: efficient synthesis of β-boryl-α,β-ethylenic esters. Chemical Communications, 2008, , 733-734.	4.1	192
67	Copper-Catalyzed Asymmetric Reduction of 3,3-Diarylacrylonitriles. Organic Letters, 2007, 9, 2749-2751.	4.6	50
68	Copper-Catalyzed β-Boration of α,β-Unsaturated Carbonyl Compounds:  Rate Acceleration by Alcohol Additivesâ€. Organic Letters, 2006, 8, 4887-4889.	4.6	303
69	Highly Enantioselective Conjugate Reduction of β,β-Disubstituted α,β-Unsaturated Nitriles. Angewandte Chemie - International Edition, 2006, 45, 2785-2787.	13.8	105
70	Zinc-Catalyzed Enantioselective Hydrosilylation of Imines. Advanced Synthesis and Catalysis, 2006, 348, 1029-1032.	4.3	97
71	Direct synthesis of Stryker's reagent from a Cu(II) salt. Tetrahedron Letters, 2005, 46, 2037-2039.	1.4	63
72	Highly efficient conjugate reduction of α,β-unsaturated nitriles catalyzed by copper/xanthene-type bisphosphine complexes. Chemical Communications, 2005, , 1755-1757.	4.1	56

#	Article	IF	CITATIONS
73	A new alternative to Stryker's reagent in hydrosilylation: synthesis, structure, and reactivity of a well-defined carbene–copper(ii) acetate complex. Chemical Communications, 2005, , 5181.	4.1	81
74	Copper-catalyzed asymmetric hydrosilylation of ketones using air and moisture stable precatalyst Cu(OAc) 2 ·H 2 O. Tetrahedron Letters, 2004, 45, 5415-5417.	1.4	111
75	One-Pot Synthesis of Enantiomerically Enriched 2,3-Disubstituted Cyclopentanones via Copper-Catalyzed 1,4-Reduction and Alkylation. Organic Letters, 2001, 3, 1129-1131.	4.6	73
76	Kinetic resolution and isomerization of 2,5-disubstituted pyrrolines. , 2000, 12, 476-478.		10
77	Titanocene-Catalyzed Asymmetric Ketone Hydrosilylation:Â The Effect of Catalyst Activation Protocol and Additives on the Reaction Rate and Enantioselectivity. Journal of the American Chemical Society, 1999, 121, 5640-5644.	13.7	198