List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9279058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	3.2	634
2	Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society, 2015, 137, 4460-4468.	6.6	586
3	All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013, 5, 3245.	2.8	401
4	Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy and Environmental Science, 2014, 7, 3326-3333.	15.6	272
5	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	5.2	233
6	Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, 3, 24226-24231.	5.2	217
7	Precise Control of Perovskite Crystallization Kinetics via Sequential Aâ€Site Doping. Advanced Materials, 2020, 32, e2004630.	11.1	122
8	Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nature Communications, 2018, 9, 4909.	5.8	117
9	Mesoporous TiO ₂ Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 2013, 5, 11249-11257.	4.0	116
10	A Quasi-Quantum Well Sensitized Solar Cell with Accelerated Charge Separation and Collection. Journal of the American Chemical Society, 2013, 135, 9531-9539.	6.6	105
11	A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3651-3658.	15.6	103
12	Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film. Nature Communications, 2016, 7, 13503.	5.8	94
13	Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy, 2019, 59, 619-625.	8.2	88
14	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	5.2	82
15	Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. Npj 2D Materials and Applications, 2017, 1, .	3.9	77
16	Largeâ€Grain Formamidinium PbI _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange. Advanced Energy Materials, 2017, 7, 1601882.	10.2	76
17	Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy, 2017, 33, 485-496.	8.2	74
18	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	10.2	74

#	Article	IF	CITATIONS
19	Flexible SnSe Photodetectors with Ultrabroad Spectral Response up to 10.6 μm Enabled by Photobolometric Effect. ACS Applied Materials & Interfaces, 2020, 12, 35250-35258.	4.0	73
20	Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection. Nanoscale, 2016, 8, 6290-6299.	2.8	69
21	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	11.1	62
22	Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO ₂ Nanowires and Their Influence on Photoelectrochemical Operation. Journal of Physical Chemistry Letters, 2014, 5, 2890-2896.	2.1	55
23	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	5.2	55
24	Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. Nanoscale, 2020, 12, 7358-7365.	2.8	53
25	Introduction of Multifunctional Triphenylamino Derivatives at the Perovskite/HTL Interface To Promote Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9300-9306.	4.0	53
26	Identifying the functional groups effect on passivating perovskite solar cells. Science Bulletin, 2020, 65, 1726-1734.	4.3	52
27	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. IScience, 2019, 21, 217-227.	1.9	43
28	2D SnSe/Si heterojunction for self-driven broadband photodetectors. 2D Materials, 2019, 6, 034004.	2.0	43
29	Interlayer Cross‣inked 2D Perovskite Solar Cell with Uniform Phase Distribution and Increased Exciton Coupling. Solar Rrl, 2020, 4, 1900578.	3.1	39
30	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. Journal of Materials Chemistry A, 2018, 6, 5566-5573.	5.2	35
31	PEDOT:PSSâ€Metal Oxide Composite Electrode with Regulated Wettability and Work Function for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Optical Materials, 2020, 8, 2000216.	3.6	34
32	Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098.	5.2	33
33	Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites. Advanced Energy Materials, 2021, 11, 2003071.	10.2	28
34	Photothermoelectric SnTe Photodetector with Broad Spectral Response and High On/Off Ratio. ACS Applied Materials & Interfaces, 2020, 12, 49830-49839.	4.0	27
35	Highly electroluminescent and stable inorganic CsPbI2Br perovskite solar cell enabled by balanced charge transfer. Chemical Engineering Journal, 2021, 417, 128053.	6.6	24
36	Enhanced Performance of Polymeric Bulk Heterojunction Solar Cells via Molecular Doping with TFSA. ACS Applied Materials & Interfaces, 2015, 7, 13415-13421.	4.0	23

#	Article	IF	CITATIONS
37	Nearâ€Infrared Photoresponse of Oneâ€6ided Abrupt MAPbl ₃ /TiO ₂ Heterojunction through a Tunneling Process. Advanced Functional Materials, 2016, 26, 8545-8554.	7.8	23
38	Recycling Spent Lead-Acid Batteries into Lead Halide for Resource Purification and Multifunctional Perovskite Diodes. Environmental Science & Technology, 2021, 55, 8309-8317.	4.6	23
39	Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5508-5515.	5.2	22
40	Ambient air processed highly oriented perovskite solar cells with efficiency exceeding 23% via amorphous intermediate. Chemical Engineering Journal, 2022, 446, 136968.	6.6	22
41	Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100Âdays. Chemical Engineering Journal, 2021, 419, 129482.	6.6	21
42	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	5.2	21
43	Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell. Journal of Energy Chemistry, 2022, 68, 176-183.	7.1	21
44	Recent Advances on Cyanâ€Emitting (480 â‰≇€‰ λ  â‰≇€‰520 nm) Metal Halide Perovskite N 2021, 1, 2000077.	Лаterials. S	Small Science
45	Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. ACS Applied Materials & amp; Interfaces, 2016, 8, 32366-32375.	4.0	19
46	Cascade Typeâ€II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar Rrl, 2020, 4, 2000282.	3.1	18
47	A ZIF-8@H:ZnO core–shell nanorod arrays/Si heterojunction self-powered photodetector with ultrahigh performance. Journal of Materials Chemistry C, 2019, 7, 5172-5183.	2.7	15
48	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Interfaces, 2019, 11, 2935-2943.	4.0	13
49	A Trifluoroethoxyl Functionalized Spiroâ€Based Holeâ€Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	12
50	Bifunctional Effects of Trichloro(octyl)silane Modification on the Performance and Stability of a Perovskite Solar Cell via Microscopic Characterization Techniques. ACS Applied Energy Materials, 2020, 3, 3302-3309.	2.5	11
51	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	3.1	11
52	New Insights into Hot-Charge Relaxation in Lead Halide Perovskite: Dynamical Bandgap Change, Hot-Biexciton Effect, and Photo-Bleaching Shift. ACS Photonics, 2022, 9, 2304-2314.	3.2	10
53	Perovskite Bifunctional Diode with High Photovoltaic and Electroluminescent Performance by Holistic Defect Passivation. Small, 2022, 18, e2105196.	5.2	9
54	Self-assembly of Ni2P nanowires as high-efficiency electrocatalyst for dye-sensitized solar cells. MRS Communications, 2012, 2, 97-99.	0.8	7

#	Article	IF	CITATIONS
55	Reciprocally Photovoltaic Lightâ€Emitting Diode Based on Dispersive Perovskite Nanocrystal. Small, 2022, 18, e2107145.	5.2	7
56	Si/SnSe-Nanorod Heterojunction with Ultrafast Infrared Detection Enabled by Manipulating Photo-Induced Thermoelectric Behavior. ACS Applied Materials & Interfaces, 2022, 14, 24557-24564.	4.0	7
57	Solution-Processed, Barrier-Confined, and 1D Nanostructure Supported Quasi-quantum Well with Large Photoluminescence Enhancement. ACS Nano, 2014, 8, 3771-3780.	7.3	6
58	Oneâ€pot Synthesis of Mesoporous TiO ₂ from Selfâ€Assembled Sol Particles and Its Application as Mesoscopic Photoanodes of Dye‧ensitized Solar Cells. ChemPlusChem, 2013, 78, 647-655.	1.3	2
59	Perovskite Solar Cells: Largeâ€Grain Formamidinium PbI _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange (Adv. Energy Mater. 12/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
60	High efficiency planar perovskite solar cell by surface disorder removal on mesoporous tin oxide. Surfaces and Interfaces, 2022, 28, 101584.	1.5	2
61	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
62	Lead Halide Perovskites: Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites (Adv. Energy Mater. 9/2021). Advanced Energy Materials, 2021, 11, 2170036.	10.2	0
63	Precise composition modulation for optimizing NiWO 4 /Pt/CdS Zâ€scheme system. Nano Select, 2021, 2, 1974.	1.9	0
64	Reciprocity Relationship of Perovskite Solar Cell and Light-Emitting Diode. , 0, , .		0