Peter A Koopman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/927852/peter-a-koopman-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

266 23,690 76 149 h-index g-index citations papers 280 6.74 25,928 7.6 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
266	Functional Analysis of Mmd2 and Related PAQR Genes During Sex Determination in Mice Sexual Development, 2022 , 1-13	1.6	O
265	Identification of regulatory elements required for expression in fetal ovarian germ cells of the mouse. <i>Development (Cambridge)</i> , 2021 , 148,	6.6	3
264	Pkd1 and Wnt5a genetically interact to control lymphatic vascular morphogenesis in mice. <i>Developmental Dynamics</i> , 2021 ,	2.9	1
263	A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. <i>Nucleic Acids Research</i> , 2021 , 49, 10931-10955	20.1	2
262	Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. <i>Human Molecular Genetics</i> , 2020 , 29, 2148-2161	5.6	3
261	The mouse locus harbors a cryptic exon that is essential for male sex determination. <i>Science</i> , 2020 , 370, 121-124	33.3	18
2 60	suppression during the murine fetal period optimizes ovarian development by fine-tuning Notch signaling. <i>Journal of Cell Science</i> , 2019 , 132,	5.3	1
259	Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. <i>Scientific Reports</i> , 2019 , 9, 11953	4.9	7
258	Genome-Wide Off-Target Analysis in CRISPR-Cas9 Modified Mice and Their Offspring. <i>G3: Genes, Genomes, Genetics</i> , 2019 , 9, 3645-3651	3.2	15
257	RNA binding protein Musashi-2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. <i>Journal of Cellular Physiology</i> , 2018 , 233, 3262-3273	7	6
256	Retinoic Acid Antagonizes Testis Development in Mice. <i>Cell Reports</i> , 2018 , 24, 1330-1341	10.6	30
255	Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination. <i>Molecular and Cellular Endocrinology</i> , 2018 , 478, 84-96	4.4	21
254	Mutant NR5A1/SF-1 in patients with disorders of sex development shows defective activation of the SOX9 TESCO enhancer. <i>Human Mutation</i> , 2018 , 39, 1861-1874	4.7	7
253	Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. <i>Nature Communications</i> , 2018 , 9, 5319	17.4	65
252	SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice. <i>Developmental Biology</i> , 2017 , 423, 46-56	3.1	24
251	Small-Molecule Inhibitors of the SOX18 Transcription Factor. <i>Cell Chemical Biology</i> , 2017 , 24, 346-359	8.2	28
250	Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal. <i>Scientific Reports</i> , 2017 , 7, 41378	4.9	9

(2015-2017)

249	Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. <i>PLoS Genetics</i> , 2017 , 13, e1006520	6	35
248	Development of the Testis 2017 ,		O
247	Sex Determination in the Mammalian Germline. <i>Annual Review of Genetics</i> , 2017 , 51, 265-285	14.5	46
246	SOX30 is required for male fertility in mice. <i>Scientific Reports</i> , 2017 , 7, 17619	4.9	34
245	Testis Determination Requires a Specific FGFR2 Isoform to Repress FOXL2. <i>Endocrinology</i> , 2017 , 158, 3832-3843	4.8	27
244	Mice Lacking Hbp1 Function Are Viable and Fertile. <i>PLoS ONE</i> , 2017 , 12, e0170576	3.7	1
243	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. <i>ELife</i> , 2017 , 6,	8.9	32
242	Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility. <i>Toxicological Sciences</i> , 2016 , 150, 178-89	4.4	43
241	Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors. <i>Molecular Oncology</i> , 2016 , 10, 526-37	7.9	23
240	The Curious World of Gonadal Development in Mammals. <i>Current Topics in Developmental Biology</i> , 2016 , 116, 537-45	5.3	14
239	Global Disorders of Sex Development Update since 2006: Perceptions, Approach and Care. <i>Hormone Research in Paediatrics</i> , 2016 , 85, 158-80	3.3	379
238	ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. <i>Nature Communications</i> , 2016 , 7, 10845	17.4	53
237	Germ cells influence cord formation and Leydig cell gene expression during mouse testis development. <i>Developmental Dynamics</i> , 2016 , 245, 433-44	2.9	7
236	Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. <i>Genome Biology</i> , 2016 , 17, 243	18.3	166
235	Of sex and determination: marking 25 years of Randy, the sex-reversed mouse. <i>Development</i> (Cambridge), 2016 , 143, 1633-7	6.6	16
234	SOX9 regulates expression of the male fertility gene Ets variant factor 5 (ETV5) during mammalian sex development. <i>International Journal of Biochemistry and Cell Biology</i> , 2016 , 79, 41-51	5.6	12
233	Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. <i>Development</i> (Cambridge), 2015 , 142, 1083-8	6.6	69
232	ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. <i>Developmental Biology</i> , 2015 , 404, 88-102	3.1	35

231	On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?. <i>Reproduction</i> , 2015 , 149, R181-91	3.8	14
230	Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. <i>European Journal of Human Genetics</i> , 2015 , 23, 486-93	5.3	23
229	RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. <i>FASEB Journal</i> , 2015 , 29, 2759-	- 68 9	18
228	Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells. <i>Biology of Reproduction</i> , 2015 , 92, 145	3.9	28
227	FGFR2 mutation in 46,XY sex reversal with craniosynostosis. <i>Human Molecular Genetics</i> , 2015 , 24, 6699-	7 4.6	34
226	Retinoic Acid and the Control of Meiotic Initiation 2015 , 383-399		
225	Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species. <i>BMC Developmental Biology</i> , 2015 , 15, 34	3.1	5
224	Rapid screening of gene function by systemic delivery of morpholino oligonucleotides to live mouse embryos. <i>PLoS ONE</i> , 2015 , 10, e0114932	3.7	7
223	Specific interaction with the nuclear transporter importin 2 can modulate paraspeckle protein 1 delivery to nuclear paraspeckles. <i>Molecular Biology of the Cell</i> , 2015 , 26, 1543-58	3.5	8
222	Control of mammalian germ cell entry into meiosis. <i>Molecular and Cellular Endocrinology</i> , 2014 , 382, 488	B -49 7	100
221	FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. <i>FASEB Journal</i> , 2014 , 28, 2020-8	0.9	37
220	Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo. <i>Developmental Biology</i> , 2014 , 386, 25-33	3.1	29
219	VEGFD regulates blood vascular development by modulating SOX18 activity. <i>Blood</i> , 2014 , 123, 1102-12	2.2	56
218	A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis. <i>Developmental Dynamics</i> , 2014 , 243, 1086-94	2.9	11
217	Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. <i>Developmental Biology</i> , 2014 , 395, 342-54	3.1	16
216	Switching on sex: transcriptional regulation of the testis-determining gene Sry. <i>Development</i> (Cambridge), 2014 , 141, 2195-205	6.6	86
215	Developmental expression of Musashi-1 and Musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression. <i>Biology of Reproduction</i> , 2014 , 90, 92	3.9	22
214	A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis. Developmental Dynamics, 2014, 243, C1-C1	2.9	

(2012-2014)

213	polyglutamine tract in sex determination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11768-73	11.5	30
212	A site-specific, single-copy transgenesis strategy to identify 5Qegulatory sequences of the mouse testis-determining gene Sry. <i>PLoS ONE</i> , 2014 , 9, e94813	3.7	5
211	Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. <i>Genes and Development</i> , 2013 , 27, 2409-26	12.6	231
210	The nuclear import factor importin 4 can protect against oxidative stress. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2013 , 1833, 2348-56	4.9	10
209	Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. <i>Science</i> , 2013 , 341, 1106-9	33.3	190
208	Precious cargo: regulation of sex-specific germ cell development in mice. <i>Sexual Development</i> , 2013 , 7, 46-60	1.6	11
207	SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. <i>Biology of Reproduction</i> , 2013 , 89, 34	3.9	79
206	Nodal/Cripto signaling in fetal male germ cell development: implications for testicular germ cell tumors. <i>International Journal of Developmental Biology</i> , 2013 , 57, 211-9	1.9	19
205	Loss of GGN leads to pre-implantation embryonic lethality and compromised male meiotic DNA double strand break repair in the mouse. <i>PLoS ONE</i> , 2013 , 8, e56955	3.7	13
204	Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. <i>Developmental Biology</i> , 2012 , 364, 89-98	3.1	70
203	SRY protein function in sex determination: thinking outside the box. <i>Chromosome Research</i> , 2012 , 20, 153-62	4.4	30
202	CITED2 mutations potentially cause idiopathic premature ovarian failure. <i>Translational Research</i> , 2012 , 160, 384-8	11	10
201	Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. <i>Development (Cambridge)</i> , 2012 , 139, 4123-32	6.6	81
200	Regulation of germ cell meiosis in the fetal ovary. <i>International Journal of Developmental Biology</i> , 2012 , 56, 779-87	1.9	21
199	Cytoplasmic plaque formation in hemidesmosome development is dependent on SoxF transcription factor function. <i>PLoS ONE</i> , 2012 , 7, e43857	3.7	7
198	Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. <i>PLoS ONE</i> , 2012 , 7, e52620	3.7	35
197	Tumor lymphangiogenesis as a potential therapeutic target. <i>Journal of Oncology</i> , 2012 , 2012, 204946	4.5	60
196	Genetic ablation of SOX18 function suppresses tumor lymphangiogenesis and metastasis of melanoma in mice. <i>Cancer Research</i> , 2012 , 72, 3105-14	10.1	47

195	Cbx2, a polycomb group gene, is required for Sry gene expression in mice. <i>Endocrinology</i> , 2012 , 153, 91	3-28	118
194	Loss of Wnt5a disrupts primordial germ cell migration and male sexual development in mice. <i>Biology of Reproduction</i> , 2012 , 86, 1-12	3.9	59
193	Initiating meiosis: the case for retinoic acid. <i>Biology of Reproduction</i> , 2012 , 86, 35	3.9	111
192	Transcription factors ER71/ETV2 and SOX9 participate in a positive feedback loop in fetal and adult mouse testis. <i>Journal of Biological Chemistry</i> , 2012 , 287, 23657-66	5.4	28
191	Redd1 is a novel marker of testis development but is not required for normal male reproduction. <i>Sexual Development</i> , 2012 , 6, 223-30	1.6	3
190	Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. <i>Endocrinology</i> , 2012 , 153, 901-12	4.8	58
189	A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. <i>European Journal of Human Genetics</i> , 2012 , 20, 348-51	5.3	40
188	The molecular genetics of sex determination and sex reversal in mammals. <i>Seminars in Reproductive Medicine</i> , 2012 , 30, 351-63	1.4	48
187	Male sex determination: insights into molecular mechanisms. <i>Asian Journal of Andrology</i> , 2012 , 14, 164	- 7<u>1</u>. 8	46
186	Identification of novel markers of mouse fetal ovary development. <i>PLoS ONE</i> , 2012 , 7, e41683	3.7	39
185	Expression of distinct RNAs from 3Quntranslated regions. <i>Nucleic Acids Research</i> , 2011 , 39, 2393-403	20.1	153
184	Tmem26 is dynamically expressed during palate and limb development but is not required for embryonic survival. <i>PLoS ONE</i> , 2011 , 6, e25228	3.7	6
183	Expansion of the Ago gene family in the teleost clade. <i>Development Genes and Evolution</i> , 2011 , 221, 95-	-1 <u>0</u> .§	8
182	Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. <i>FASEB Journal</i> , 2011 , 25, 3561-9	0.9	7 ²
181	Analysis of gene function in cultured embryonic mouse gonads using nucleofection. <i>Sexual Development</i> , 2011 , 5, 7-15	1.6	11
180	FOXL2 and BMP2 act cooperatively to regulate follistatin gene expression during ovarian development. <i>Endocrinology</i> , 2011 , 152, 272-80	4.8	79
179	Inhibition of SRY-calmodulin complex formation induces ectopic expression of ovarian cell markers in developing XY gonads. <i>Endocrinology</i> , 2011 , 152, 2883-93	4.8	13
178	Uncovering gene regulatory networks during mouse fetal germ cell development. <i>Biology of Reproduction</i> , 2011 , 84, 790-800	3.9	27

(2010-2011)

177	Expression and functional analysis of Dkk1 during early gonadal development. <i>Sexual Development</i> , 2011 , 5, 124-30	1.6	13
176	Prokr2-deficient mice display vascular dysmorphology of the fetal testes: potential implications for Kallmann syndrome aetiology. <i>Sexual Development</i> , 2011 , 5, 294-303	1.6	9
175	Sox factors transcriptionally regulate ROBO4 gene expression in developing vasculature in zebrafish. <i>Journal of Biological Chemistry</i> , 2011 , 286, 30740-30747	5.4	13
174	Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. <i>Human Molecular Genetics</i> , 2011 , 20, 2213-24	5.6	51
173	Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. <i>PLoS ONE</i> , 2011 , 6, e17793	3.7	88
172	Cell cycle control of germ cell differentiation. Results and Problems in Cell Differentiation, 2011, 53, 269-	308	6
171	Insights into the aetiology of ovotesticular DSD from studies of mouse ovotestes. <i>Advances in Experimental Medicine and Biology</i> , 2011 , 707, 55-6	3.6	O
170	The delicate balance between male and female sex determining pathways: potential for disruption of early steps in sexual development. <i>Journal of Developmental and Physical Disabilities</i> , 2010 , 33, 252-8		27
169	Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. <i>Reproduction</i> , 2010 , 139, 943-58	3.8	88
168	Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. <i>Human Molecular Genetics</i> , 2010 , 19, 506-16	5.6	120
167	Retinoblastoma 1 protein modulates XY germ cell entry into G1/G0 arrest during fetal development in mice. <i>Biology of Reproduction</i> , 2010 , 82, 433-43	3.9	46
166	Sry: the master switch in mammalian sex determination. <i>Development (Cambridge)</i> , 2010 , 137, 3921-30	6.6	234
165	HMG Domain Superfamily of DNA-bending Proteins: HMG, UBF, TCF, LEF, SOX, SRY and Related Proteins 2010 ,		4
164	A male-specific role for p38 mitogen-activated protein kinase in germ cell sex differentiation in mice. <i>Biology of Reproduction</i> , 2010 , 83, 1005-14	3.9	21
163	Organogenesis in development. Preface. Current Topics in Developmental Biology, 2010, 90, xiii-xiv	5.3	2
162	Gonadal defects in Cited2-mutant mice indicate a role for SF1 in both testis and ovary differentiation. <i>International Journal of Developmental Biology</i> , 2010 , 54, 683-9	1.9	38
161	Mouse germ cell development: from specification to sex determination. <i>Molecular and Cellular Endocrinology</i> , 2010 , 323, 76-93	4.4	98
160	Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination. <i>International Journal of Biochemistry and Cell Biology</i> , 2010 , 42, 472-7	5.6	61

159	SoxF genes: Key players in the development of the cardio-vascular system. <i>International Journal of Biochemistry and Cell Biology</i> , 2010 , 42, 445-8	5.6	113
158	FGF9 suppresses meiosis and promotes male germ cell fate in mice. Developmental Cell, 2010, 19, 440-9	10.2	196
157	Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is expressed in a sexually dimorphic pattern in developing mouse gonads. <i>Developmental Dynamics</i> , 2010 , 239, 2735-41	2.9	6
156	Molecular characterization of the Bidder@ organ in the cane toad (Bufo marinus). <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2010 , 314, 503-13	1.8	5
155	Profiles of gonadal gene expression in the developing bovine embryo. Sexual Development, 2009, 3, 273	8- 8 8	18
154	A cell-autonomous role for WT1 in regulating Sry in vivo. <i>Human Molecular Genetics</i> , 2009 , 18, 3429-38	5.6	59
153	Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. <i>Human Molecular Genetics</i> , 2009 , 18, 2839-50	5.6	39
152	Sox9-dependent expression of Gstm6 in Sertoli cells during testis development in mice. <i>Reproduction</i> , 2009 , 137, 481-6	3.8	6
151	Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. <i>Development (Cambridge)</i> , 2009 , 136, 2385-91	6.6	69
150	Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. <i>PLoS Biology</i> , 2009 , 7, e1000196	9.7	112
149	The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice. <i>Biology of Reproduction</i> , 2009 , 80, 1178-88	3.9	37
148	A critical time window of Sry action in gonadal sex determination in mice. <i>Development (Cambridge)</i> , 2009 , 136, 129-38	6.6	157
147	Sex determination: the power of DMRT1. <i>Trends in Genetics</i> , 2009 , 25, 479-81	8.5	33
146	Cell cycle analysis of fetal germ cells during sex differentiation in mice. <i>Biology of the Cell</i> , 2009 , 101, 587-98	3.5	23
145	Ex vivo magnetofection: a novel strategy for the study of gene function in mouse organogenesis. <i>Developmental Dynamics</i> , 2009 , 238, 956-64	2.9	16
144	Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. <i>Developmental Dynamics</i> , 2009 , 238, 1033-41	2.9	67
143	Male-specific expression of Aldh1a1 in mouse and chicken fetal testes: implications for retinoid balance in gonad development. <i>Developmental Dynamics</i> , 2009 , 238, 2073-80	2.9	42
142	Cloning and expression of candidate sexual development genes in the cane toad (Bufo marinus). <i>Developmental Dynamics</i> , 2009 , 238, 2430-41	2.9	20

141	Z and W sex chromosomes in the cane toad (Bufo marinus). <i>Chromosome Research</i> , 2009 , 17, 1015-24	4.4	31
140	Endothelial cell migration directs testis cord formation. <i>Developmental Biology</i> , 2009 , 326, 112-20	3.1	136
139	Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. <i>Mechanisms of Development</i> , 2009 , 126, 324-36	1.7	90
138	Identification of suitable normalizing genes for quantitative real-time RT-PCR analysis of gene expression in fetal mouse gonads. <i>Sexual Development</i> , 2009 , 3, 194-204	1.6	59
137	Functional analysis of the SRY-KRAB interaction in mouse sex determination. <i>Biology of the Cell</i> , 2009 , 101, 55-67	3.5	14
136	Global survey of protein expression during gonadal sex determination in mice. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 2624-41	7.6	13
135	Sox18 induces development of the lymphatic vasculature in mice. <i>Nature</i> , 2008 , 456, 643-7	50.4	405
134	Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. <i>Clinical Endocrinology</i> , 2008 , 68, 791-9	3.4	41
133	Sox8 is a critical regulator of adult Sertoli cell function and male fertility. <i>Developmental Biology</i> , 2008 , 316, 359-70	3.1	79
132	Genesis and expansion of metazoan transcription factor gene classes. <i>Molecular Biology and Evolution</i> , 2008 , 25, 980-96	8.3	221
131	Testis development, fertility, and survival in Ethanolamine kinase 2-deficient mice. <i>Endocrinology</i> , 2008 , 149, 6176-86	4.8	8
130	Sox18 and Sox7 play redundant roles in vascular development. <i>Blood</i> , 2008 , 111, 2657-66	2.2	155
129	The rhox homeobox gene family shows sexually dimorphic and dynamic expression during mouse embryonic gonad development. <i>Biology of Reproduction</i> , 2008 , 79, 468-74	3.9	24
128	Expression-Based Strategies for Discovery of Genes Involved in Testis and Ovary Development. <i>Novartis Foundation Symposium</i> , 2008 , 240-252		4
127	New insights into SRY regulation through identification of 5Q conserved sequences. <i>BMC Molecular Biology</i> , 2008 , 9, 85	4.5	15
126	Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. <i>BMC Developmental Biology</i> , 2008 , 8, 85	3.1	92
125	Sex-Determining Cascades in Gonadal Development: Insights from Ovotestes <i>Biology of Reproduction</i> , 2008 , 78, 278-278	3.9	1
124	Aard is specifically up-regulated in Sertoli cells during mouse testis differentiation. <i>International Journal of Developmental Biology</i> , 2007 , 51, 255-8	1.9	13

123	A high-resolution anatomical ontology of the developing murine genitourinary tract. <i>Gene Expression Patterns</i> , 2007 , 7, 680-99	1.5	114
122	Sox8 and Sertoli-cell function. <i>Annals of the New York Academy of Sciences</i> , 2007 , 1120, 104-13	6.5	8
121	Retinoic acid, meiosis and germ cell fate in mammals. Development (Cambridge), 2007, 134, 3401-11	6.6	261
120	Sex determination and gonadal development in mammals. <i>Physiological Reviews</i> , 2007 , 87, 1-28	47.9	444
119	Involvement of homeobox genes in mammalian sexual development. Sexual Development, 2007, 1, 12-2	231.6	25
118	Comparative analysis of anti-mouse SRY antibodies. Sexual Development, 2007, 1, 305-10	1.6	14
117	Characterisation of urogenital ridge gene expression in the human embryonal carcinoma cell line NT2/D1. <i>Sexual Development</i> , 2007 , 1, 114-26	1.6	22
116	Sex-specific expression of a novel gene Tmem184a during mouse testis differentiation. <i>Reproduction</i> , 2007 , 133, 983-9	3.8	16
115	SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. Journal of Biological Chemistry, 2007 , 282, 10553-60	5.4	166
114	Sry and the hesitant beginnings of male development. <i>Developmental Biology</i> , 2007 , 302, 13-24	3.1	78
113	Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. <i>Biochemical and Biophysical Research Communications</i> , 2007 , 360, 539-44	3.4	123
112	Comparative proteomic analysis to study molecular events during gonad development in mice. <i>Genesis</i> , 2006 , 44, 168-76	1.9	17
111	Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. <i>Human Molecular Genetics</i> , 2006 , 15, 417-31	5.6	131
110	Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. <i>Journal of the National Cancer Institute</i> , 2006 , 98, 1060-7	9.7	65
109	Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. <i>Journal of Cell Science</i> , 2006 , 119, 3513-26	5.3	157
108	In situ hybridization of whole-mount embryos. <i>Methods in Molecular Biology</i> , 2006 , 326, 103-13	1.4	37
107	Retinoid signaling determines germ cell fate in mice. <i>Science</i> , 2006 , 312, 596-600	33.3	770
106	CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. <i>Developmental Biology</i> , 2006 , 293, 449-60	3.1	86

(2004-2006)

105	The makings of maleness: towards an integrated view of male sexual development. <i>Nature Reviews Genetics</i> , 2006 , 7, 620-31	30.1	169
104	The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. <i>Molecular Reproduction and Development</i> , 2006 , 73, 531-9	2.6	14
103	Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. <i>Bone</i> , 2005 , 37, 313-22	4.7	243
102	Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. <i>Developmental Biology</i> , 2005 , 278, 473-81	3.1	140
101	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. <i>Developmental Biology</i> , 2005 , 287, 111-24	3.1	237
100	Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development. <i>Molecular Genetics and Metabolism</i> , 2005 , 86, 286-92	3.7	5
99	Sex determination: a tale of two Sox genes. <i>Trends in Genetics</i> , 2005 , 21, 367-70	8.5	61
98	Osteopontin and related SIBLING glycoprotein genes are expressed by Sertoli cells during mouse testis development. <i>Developmental Dynamics</i> , 2005 , 233, 1488-95	2.9	14
97	Regulation of Amh during sex determination in chickens: Sox gene expression in male and female gonads. <i>Cellular and Molecular Life Sciences</i> , 2005 , 62, 2140-6	10.3	9
96	Genetic basis of human testicular germ cell cancer: insights from the fruitfly and mouse. <i>Cell and Tissue Research</i> , 2005 , 322, 5-19	4.2	3
95	Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. <i>Reproduction</i> , 2005 , 130, 509-16	3.8	40
94	The transcription factors steroidogenic factor-1 and SOX9 regulate expression of Vanin-1 during mouse testis development. <i>Journal of Biological Chemistry</i> , 2005 , 280, 5917-23	5.4	55
93	The VCAM-1 gene that encodes the vascular cell adhesion molecule is a target of the Sry-related high mobility group box gene, Sox18. <i>Journal of Biological Chemistry</i> , 2004 , 279, 5314-22	5.4	40
92	Seeds of concern. <i>Nature</i> , 2004 , 432, 48-52	50.4	2 80
91	The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. <i>Trends in Genetics</i> , 2004 , 20, 4-8	8.5	59
90	Expression of the tudor-related gene Tdrd5 during development of the male germline in mice. <i>Gene Expression Patterns</i> , 2004 , 4, 701-5	1.5	30
89	Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. <i>Molecular Reproduction and Development</i> , 2004 , 68, 422-8	2.6	128
88	HMG box transcription factor gene Hbp1 is expressed in germ cells of the developing mouse testis. <i>Developmental Dynamics</i> , 2004 , 230, 366-70	2.9	14

87	Sox8 is expressed at similar levels in gonads of both sexes during the sex determining period in turtles. <i>Developmental Dynamics</i> , 2004 , 231, 387-95	2.9	20
86	Sox genes and cancer. Cytogenetic and Genome Research, 2004, 105, 442-7	1.9	116
85	Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugurubripes. <i>Gene</i> , 2004 , 328, 177-86	3.8	124
84	GonadsMlerian Ducts 2004 , 345-357		
83	SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. <i>Journal of Biological Chemistry</i> , 2003 , 278, 28101-8	5.4	130
82	Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. <i>Endocrinology</i> , 2003 , 144, 3237-43	4.8	193
81	Sex determination: the fishy tale of Dmrt1. Current Biology, 2003, 13, R177-9	6.3	26
80	Genomic screen for genes involved in mammalian craniofacial development. <i>Genesis</i> , 2003 , 35, 73-87	1.9	44
79	Sox18 mutations in the ragged mouse alleles ragged-like and opossum. <i>Genesis</i> , 2003 , 36, 1-6	1.9	52
78	Molecular characterization of three gonad cell lines. <i>Cytogenetic and Genome Research</i> , 2003 , 101, 242-	-9 1.9	27
77	Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. <i>Cytogenetic and Genome Research</i> , 2003 , 101, 261-5	1.9	50
76	Origin and possible roles of the SOX8 transcription factor gene during sexual development. <i>Cytogenetic and Genome Research</i> , 2003 , 101, 212-218	1.9	17
75	Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. <i>Developmental Dynamics</i> , 2002 , 225, 95-9	2.9	33
74	Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. <i>Journal of Orthopaedic Research</i> , 2002 , 20, 827-33	3.8	86
73	Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. <i>Developmental Cell</i> , 2002 , 3, 167-70	10.2	408
72	Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. <i>Current Opinion in Genetics and Development</i> , 2002 , 12, 441-6	4.9	250
71	Making waves down under: the Australian Developmental Biology Workshop. <i>International Journal of Developmental Biology</i> , 2002 , 46, 363-4	1.9	
70	SRY and DNA-bending Proteins 2001 ,		1

(2000-2001)

69	Regulation of male sexual development by Sry and Sox9. <i>The Journal of Experimental Zoology</i> , 2001 , 290, 463-74		53
68	Searching for missing pieces of the sex-determination puzzle. <i>The Journal of Experimental Zoology</i> , 2001 , 290, 517-22		14
67	Spatially dynamic expression of Sry in mouse genital ridges. <i>Developmental Dynamics</i> , 2001 , 221, 201-5	2.9	212
66	Transcriptional suppression of Sox9 expression in chondrocytes by retinoic acid. <i>Journal of Cellular Biochemistry</i> , 2001 , Suppl 36, 71-8	4.7	29
65	Sox18 is transiently expressed during angiogenesis in granulation tissue of skin wounds with an identical expression pattern to Flk-1 mRNA. <i>Laboratory Investigation</i> , 2001 , 81, 937-43	5.9	40
64	Gonad development: signals for sex. <i>Current Biology</i> , 2001 , 11, R481-3	6.3	11
63	SOX18 and the transcriptional regulation of blood vessel development. <i>Trends in Cardiovascular Medicine</i> , 2001 , 11, 318-24	6.9	62
62	Transcriptional modulation of mouse mu-opioid receptor distal promoter activity by Sox18. <i>Molecular Pharmacology</i> , 2001 , 59, 1486-96	4.3	20
61	Dexamethasone enhances SOX9 expression in chondrocytes. <i>Journal of Endocrinology</i> , 2001 , 169, 573-9	4.7	60
60	New clues to the puzzle of mammalian sex determination. <i>Genome Biology</i> , 2001 , 2, REVIEWS1025	18.3	14
59	SOX18 directly interacts with MEF2C in endothelial cells. <i>Biochemical and Biophysical Research Communications</i> , 2001 , 287, 493-500	3.4	46
58	Cloning and functional analysis of the Sry-related HMG box gene, Sox18. <i>Gene</i> , 2001 , 262, 239-47	3.8	35
57	Sox18 expression in blood vessels and feather buds during chicken embryogenesis. <i>Gene</i> , 2001 , 271, 151-8	3.8	12
56	Sry, Sox9 and mammalian sex determination. <i>Exs</i> , 2001 , 25-56		18
55	Characterisation of Crim1 expression in the developing mouse urogenital tract reveals a sexually dimorphic gonadal expression pattern. <i>Developmental Dynamics</i> , 2000 , 219, 582-7	2.9	22
54	A subtractive gene expression screen suggests a role for vanin-1 in testis development in mice. <i>Genesis</i> , 2000 , 27, 124-135	1.9	58
53	Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. <i>Nature Genetics</i> , 2000 , 24, 434-7	36.3	179
52	Structure, mapping, and expression of human SOX18. <i>Mammalian Genome</i> , 2000 , 11, 1147-9	3.2	11

51	Sox14 maps to mouse chromosome 9 and shows no mutations in the neurological mouse mutants ducky and tippy. <i>Mammalian Genome</i> , 2000 , 11, 231-3	3.2	1
50	Fine mapping of the neurally expressed gene SOX14 to human 3q23, relative to three congenital diseases. <i>Human Genetics</i> , 2000 , 106, 432-9	6.3	17
49	SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. <i>Journal of Biological Chemistry</i> , 2000 , 275, 10738-44	5.4	365
48	Mice null for sox18 are viable and display a mild coat defect. <i>Molecular and Cellular Biology</i> , 2000 , 20, 9331-6	4.8	100
47	Cloning and characterisation of the Sry-related transcription factor gene Sox8. <i>Nucleic Acids Research</i> , 2000 , 28, 1473-80	20.1	67
46	The HMG box transcription factor gene Sox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog. <i>Developmental Biology</i> , 2000 , 219, 142-53	3.1	45
45	Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. <i>Developmental Biology</i> , 2000 , 227, 239-55	3.1	720
44	In situ hybridization of whole-mount embryos. <i>Methods in Molecular Biology</i> , 2000 , 123, 279-89	1.4	19
43	Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. <i>Human Molecular Genetics</i> , 1999 , 8, 691-6	5.6	82
42	Sry requires a CAG repeat domain for male sex determination in Mus musculus. <i>Nature Genetics</i> , 1999 , 22, 405-8	36.3	114
41	Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences, 1999, 55, 839-	56 10.3	70
40	Sertoli cell differentiation and Y-chromosome activity: a developmental study of X-linked transgene activity in sex-reversed X/XSxra mouse embryos. <i>Developmental Biology</i> , 1998 , 199, 235-44	3.1	17
39	The UTX gene escapes X inactivation in mice and humans. <i>Human Molecular Genetics</i> , 1998 , 7, 737-42	5.6	163
38	Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. <i>European Journal of Oral Sciences</i> , 1998 , 106 Suppl 1, 112-6	2.3	39
37	SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. <i>Developmental Biology</i> , 1997 , 183, 108-21	3.1	560
36	SOX9 directly regulates the type-II collagen gene. <i>Nature Genetics</i> , 1997 , 16, 174-8	36.3	745
35	Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. <i>Developmental Dynamics</i> , 1997 , 210, 79-86	2.9	111
34	Aetiology of the skeletal dysmorphology syndrome campomelic dysplasia: expression of the Sox9 gene during chondrogenesis in mouse embryos. <i>Annals of the New York Academy of Sciences</i> , 1996 , 785, 350-2	6.5	8

33	The Sry-related gene Sox18 maps to distal mouse chromosome 2. <i>Genomics</i> , 1996 , 36, 558-9	4.3	12
32	Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. <i>Human Reproduction</i> , 1996 , 11, 1668-73	5.7	267
31	SRY and mammalian sex determination. Current Topics in Developmental Biology, 1996, 34, 1-23	5.3	13
30	Analysis of the role of Amh and Fra1 in the Sry regulatory pathway. <i>Molecular Reproduction and Development</i> , 1996 , 44, 153-8	2.6	27
29	Exclusion of Sox9 as a candidate for the mouse mutant tail-short. <i>Mammalian Genome</i> , 1996 , 7, 481-5	3.2	7
28	An H-YDb epitope is encoded by a novel mouse Y chromosome gene. <i>Nature Genetics</i> , 1996 , 14, 474-8	36.3	165
27	Analysis of the role of Amh and Fra1 in the Sry regulatory pathway 1996 , 44, 153		2
26	The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. <i>Nature Genetics</i> , 1995 , 9, 15-20	36.3	580
25	Expression of a linear Sry transcript in the mouse genital ridge. <i>Nature Genetics</i> , 1995 , 10, 480-2	36.3	158
24	Widespread expression of the testis-determining gene SRY in a marsupial. <i>Nature Genetics</i> , 1995 , 11, 347-9	36.3	88
23	Trans-activation and DNA-binding properties of the transcription factor, Sox-18. <i>Nucleic Acids Research</i> , 1995 , 23, 2626-8	20.1	70
22	The molecular biology of SRY and its role in sex determination in mammals. <i>Reproduction, Fertility and Development</i> , 1995 , 7, 713-22	1.8	28
21	The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. <i>Nucleic Acids Research</i> , 1995 , 23, 3365-72	20.1	132
20	Sequence and expression of Sox-18 encoding a new HMG-box transcription factor. <i>Gene</i> , 1995 , 161, 223	3-<u>5</u>. 8	50
19	The human SOX11 gene: cloning, chromosomal assignment and tissue expression. <i>Genomics</i> , 1995 , 29, 541-5	4.3	76
18	Alternative splicing of the first nucleotide binding fold of CFTR in mouse testes is associated with specific stages of spermatogenesis. <i>Genomics</i> , 1994 , 20, 517-8	4.3	14
17	Circular transcripts of the testis-determining gene Sry in adult mouse testis. <i>Cell</i> , 1993 , 73, 1019-30	56.2	783
16	Analysis of gene expression by PCR. <i>Methods in Molecular Biology</i> , 1993 , 18, 345-53	1.4	

15	Seven new members of the Sox gene family expressed during mouse development. <i>Nucleic Acids Research</i> , 1993 , 21, 744	20.1	170
14	Mammalian sex-determining genes. Current Opinion in Biotechnology, 1992 , 3, 603-6	11.4	1
13	Male development of chromosomally female mice transgenic for Sry. <i>Nature</i> , 1991 , 351, 117-21	50.4	1741
12	Testis-determining factor and Y-linked sex reversal. <i>Current Opinion in Genetics and Development</i> , 1991 , 1, 30-3	4.9	11
11	A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. <i>Nature</i> , 1990 , 346, 245-50	50.4	1396
10	Expression of a candidate sex-determining gene during mouse testis differentiation. <i>Nature</i> , 1990 , 348, 450-2	50.4	718
9	Widespread expression of human alpha 1-antitrypsin in transgenic mice revealed by in situ hybridization. <i>Genes and Development</i> , 1989 , 3, 16-25	12.6	53
8	Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. <i>Nature</i> , 1989 , 342, 940-2	50.4	178
7	Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1988 , 85, 6442-5	11.5	80
6	Pluripotent differentiation of single F9 embryonal carcinoma cells. <i>Experimental Cell Research</i> , 1987 , 168, 567-71	4.2	7
5	A differentiation-defective concanavalin-A-resistant variant of a pluripotent embryonal carcinoma cell line. <i>Differentiation</i> , 1987 , 34, 216-21	3.5	3
4	The response of embryonal carcinoma cells to retinoic acid depends on colony size. <i>Differentiation</i> , 1986 , 31, 55-60	3.5	6
3	A factor produced by feeder cells which inhibits embryonal carcinoma cell differentiation. Characterization and partial purification. <i>Experimental Cell Research</i> , 1984 , 154, 233-42	4.2	57
2	Sox Genes: At the Heart of Endothelial Transcription861-867		
1	Sex Determination and Gonadal Development27-79		1