
Sophie Beltran-Bech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9278238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of infection on mate choice. Animal Behaviour, 2014, 90, 159-170.	1.9	87
2	Cheap, rapid and efficient DNA extraction method to perform multilocus microsatellite genotyping on all Schistosoma mansoni stages. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 501-503.	1.6	34
3	Schistosome monogamy: who, how, and why?. Trends in Parasitology, 2008, 24, 386-391.	3.3	28
4	Host tissues as microhabitats for <i><scp>W</scp>olbachia</i> and quantitative insights into the bacterial community in terrestrial isopods. Molecular Ecology, 2014, 23, 2619-2635.	3.9	28
5	Whole-genome in-silico subtractive hybridization (WISH) - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni. BMC Genomics, 2010, 11, 387.	2.8	27
6	Genetic Dissimilarity between Mates, but Not Male Heterozygosity, Influences Divorce in Schistosomes. PLoS ONE, 2008, 3, e3328.	2.5	25
7	Male-biased sex ratio: why and what consequences for the genus Schistosoma?. Trends in Parasitology, 2010, 26, 63-69.	3.3	19
8	Follow-up of the genetic diversity and snail infectivity of a Schistosoma mansoni strain from field to laboratory. Infection, Genetics and Evolution, 2010, 10, 1039-1045.	2.3	18
9	Vertebrate host protective immunity drives genetic diversity and antigenic polymorphism in Schistosoma mansoni. Journal of Evolutionary Biology, 2011, 24, 554-572.	1.7	15
10	Do parasites adopt different strategies in different intermediate hosts? Host size, not host species, influences <i>Coitocaecum parvum</i> (Trematoda) life history strategy, size and egg production. Parasitology, 2013, 140, 275-283.	1.5	13
11	Are schistosomes socially and genetically monogamous?. Parasitology Research, 2009, 104, 481-483.	1.6	11
12	Adult sex ratio affects divorce rate in the monogamous endoparasite Schistosoma mansoni. Behavioral Ecology and Sociobiology, 2009, 63, 1363-1368.	1.4	10
13	How Do Females' Genetic Characteristics Influence Male Mate Preference in the Terrestrial Isopod <i>Armadillidium vulgare</i> ?. Ethology, 2015, 121, 1122-1130.	1.1	9
14	Reproductive senescence and parental effects in an indeterminate grower. Journal of Evolutionary Biology, 2020, 33, 1256-1264.	1.7	9
15	Why and how do protective symbionts impact immune priming with pathogens in invertebrates?. Developmental and Comparative Immunology, 2022, 126, 104245.	2.3	9
16	Paternity success depends on male genetic characteristics in the terrestrial isopod Armadillidium vulgare. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	7
17	Multiple paternity in a wild population of <i>Armadillidium vulgare</i> : influence of infection with <i>Wolbachia</i> ?. Journal of Evolutionary Biology, 2017, 30, 235-243.	1.7	6
18	Fine-scale population structure analysis in Armadillidium vulgare (Isopoda: Oniscidea) reveals strong female philopatry. Acta Oecologica, 2019, 101, 103478.	1.1	6

SOPHIE BELTRAN-BECH

#	Article	IF	CITATIONS
19	The crustacean Armadillidium vulgare (Latreille, 1804) (Isopoda: Oniscoidea), a new promising model for the study of cellular senescence. Journal of Crustacean Biology, 2020, 40, 194-199.	0.8	6
20	Immune priming depends on age, sex and <i>Wolbachia</i> in the interaction between <i>Armadillidium vulgare</i> and <i>Salmonella</i> . Journal of Evolutionary Biology, 2021, 34, 256-269.	1.7	6
21	Producing offspring in <i>Armadillidium vulgare</i> : Effects of genetic diversity and inbreeding. Evolution & Development, 2018, 20, 65-77.	2.0	5
22	Survival capacity of the common woodlouse Armadillidium vulgare is improved with a second infection of Salmonella enterica. Journal of Invertebrate Pathology, 2019, 168, 107278.	3.2	4
23	Mating system drives negative associations between morphological features in Schistosomatidae. BMC Evolutionary Biology, 2010, 10, 245.	3.2	3
24	Effects of genetic similarity on the lifeâ€history strategy of coâ€infecting trematodes: are parasites capable of intrahost kin recognition?. Journal of Evolutionary Biology, 2014, 27, 1623-1630.	1.7	2
25	Genetic connectivity of the grey partridge in central northern France in a highly man dominated landscape. Conservation Genetics, 2014, 15, 1001-1011.	1.5	2
26	Isolation, characterization and PCR multiplexing of microsatellite loci for two sub-species of terrestrial isopod Porcellio dilatatus (Crustacea, Oniscidea). Genetica, 2016, 144, 223-228.	1.1	1
27	When GIS zooms in: spatio-genetic maps of multipaternity in Armadillidium vulgare. Genetica, 2017, 145, 503-512.	1.1	1
28	Promiscuity and sex ratio in the terrestrial isopod Armadillidium vulgare and consequences on genetic diversity. Behavioural Processes, 2020, 171, 104030.	1.1	0
29	Experimental evidence of <i>Wolbachia</i> introgressive acquisition between terrestrial isopod subspecies. Environmental Epigenetics, 2021, 67, 455-464.	1.8	0
30	Immune priming in Armadillidium vulgare against Salmonella enterica: direct or indirect costs on life history traits?. ZooKeys, 0, 1101, 131-158.	1.1	0