MiklÃ³s Bak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9278097/publications.pdf Version: 2024-02-01

Μικι Δ3ς Βλκ

#	Article	IF	CITATIONS
1	Coloration of flax woven fabrics using <i>Taxus baccata</i> heartwoodâ€mediated nanosilver. Coloration Technology, 2022, 138, 146-156.	0.7	5
2	Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Composite Interfaces, 2022, 29, 503-521.	1.3	20
3	Nanosilver coating on hemp/cotton blended woven fabrics mediated from mammoth pine bark with improved coloration and mechanical properties. Journal of the Textile Institute, 2022, 113, 2641-2650.	1.0	3
4	Green synthesis of nanosilver using <i>Fomes fomentarius</i> mushroom extract over aramid fabrics with improved coloration effects. Textile Reseach Journal, 2022, 92, 3567-3578.	1.1	8
5	Biological Durability of Acetylated Hornbeam Wood with Soil Contact in Hungary. Forests, 2022, 13, 1003.	0.9	2
6	Photostability of Oil-Coated and Stain-Coated Acetylated Hornbeam Wood against Natural Weather and Artificial Aging. Coatings, 2022, 12, 817.	1.2	1
7	Semi-dry technology mediated lignocellulosic coconut and energy reed straw reinforced cementitious insulation panels. Journal of Building Engineering, 2022, 57, 104825.	1.6	4
8	A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 2021, 11, 10548-10571.	1.7	78
9	Beech wood impregnation with hydrolyzed wattle tannin. BioResources, 2021, 16, 2548-2556.	0.5	3
10	Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose, 2021, 28, 7859-7875.	2.4	30
11	Evaluation of some wood-water relations and chemometric characteristics of recent oak and archaeological oak wood (Quercus robur) with archaeometric value. Journal of Cultural Heritage, 2021, 51, 21-28.	1.5	13
12	Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels. Construction and Building Materials, 2021, 305, 124816.	3.2	19
13	Microstructural and Chemical Characteristics of Archaeological White Elm (Ulmus laevis P.) and Poplar (Populus spp.). Applied Sciences (Switzerland), 2021, 11, 10271.	1.3	13
14	Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. Journal of Polymer Research, 2021, 28, 1.	1.2	24
15	Colorful and facile in situ nanosilver coating on sisal/cotton interwoven fabrics mediated from European larch heartwood. Scientific Reports, 2021, 11, 22397.	1.6	7
16	Comparative archaeometric characterization of recent and historical oak (Quercus spp.) wood. Wood Science and Technology, 2020, 54, 1121-1137.	1.4	18
17	Improvement of dimensional stability of wood by silica nanoparticles. Wood Material Science and Engineering, 2019, 14, 48-58.	1.1	20
18	Effect of Different Nanoparticle Treatments on the Decay Resistance of Wood. BioResources, 2018, 13, .	0.5	33

Miklós Bak

#	Article	IF	CITATIONS
19	Colour stability of oil-heat treated black locust and poplar wood during short-term UV radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 287-292.	2.0	15
20	Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products, 2016, 74, 909-911.	1.3	34
21	Effect of Soil Contact on the Modulus of Elasticity of Beeswax-Impregnated Wood. BioResources, 2014, 10, .	0.5	10
22	Variation of Colour Properties between and within New Robinia Varieties with Enhanced Growing Rates from Different Sites. BioResources, 2014, 9, .	0.5	3
23	The Effect of Moisture Content and Drying Temperature on the Colour of Two Poplars and Robinia Wood. BioResources, 2013, 8, .	0.5	14
24	CHANGES IN SWELLING PROPERTIES AND MOISTURE UPTAKE RATE OF OIL-HEAT-TREATED POPLAR (POPULUS) T	j ETQq0 0	0 rgBT /Over