
Joachim Clos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9277621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Content Analysis of Macrophage-Targeting EhPlb-Compounds against Cutaneous and Visceral Leishmania Species. Microorganisms, 2021, 9, 422.	3.6	5
2	Design, Synthesis and Antiparasitic Evaluation of Click Phospholipids. Molecules, 2021, 26, 4204.	3.8	3
3	Repurposing Carvedilol as a Novel Inhibitor of the Trypanosoma cruzi Autophagy Flux That Affects Parasite Replication and Survival. Frontiers in Cellular and Infection Microbiology, 2021, 11, 657257.	3.9	7
4	Life Cycle Stage-Specific Accessibility of Leishmania donovani Chromatin at Transcription Start Regions. MSystems, 2021, 6, e0062821.	3.8	6
5	Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes, 2020, 11, 1159.	2.4	9
6	Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Scientific Reports, 2020, 10, 15969.	3.3	8
7	Heat Shock Proteins in Leishmania Parasites. Heat Shock Proteins, 2020, , 469.	0.2	2
8	The Leishmania donovani SENP Protease Is Required for SUMO Processing but Not for Viability. Genes, 2020, 11, 1198.	2.4	3
9	Antileishmanial Effects of Synthetic <i>Eh</i> Plb Analogs Derived from the Entamoeba histolytica Lipopeptidephosphoglycan. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	4
10	Leishmania: Responding to environmental signals and challenges without regulated transcription. Computational and Structural Biotechnology Journal, 2020, 18, 4016-4023.	4.1	14
11	Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. European Journal of Medicinal Chemistry, 2019, 183, 111676.	5.5	18
12	Cosmid Library Construction and Functional Cloning. Methods in Molecular Biology, 2019, 1971, 123-140.	0.9	5
13	Leishmania donovani 90 kD Heat Shock Protein – Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Scientific Reports, 2019, 9, 5074.	3.3	29
14	Gene Replacement by Homologous Recombination. Methods in Molecular Biology, 2019, 1971, 169-188.	0.9	3
15	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
16	Ribosome Profiling Reveals HSP90 Inhibitor Effects on Stage-Specific Protein Synthesis in <i>Leishmania donovani</i> . MSystems, 2018, 3, .	3.8	20
17	Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Medical Microbiology and Immunology, 2017, 206, 235-257.	4.8	15
18	Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress and Chaperones, 2017, 22, 729-742.	2.9	15

JOACHIM CLOS

#	Article	IF	CITATIONS
19	Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infection and Immunity, 2017, 85, .	2.2	34
20	Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds. European Journal of Medicinal Chemistry, 2017, 126, 1129-1135.	5.5	20
21	Synthetic analogs of an Entamoeba histolytica glycolipid designed to combat intracellular Leishmania infection. Scientific Reports, 2017, 7, 9472.	3.3	7
22	MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Scientific Reports, 2017, 7, 10202.	3.3	28
23	Leishmania Heat Shock Proteins as Effectors of Immune Evasion and Virulence. Current Immunology Reviews, 2017, 13, .	1.2	1
24	Phenotypic Characterization of a <i>Leishmania donovani</i> Cyclophilin 40 Null Mutant. Journal of Eukaryotic Microbiology, 2016, 63, 823-833.	1.7	12
25	Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. Journal of Medicinal Chemistry, 2016, 59, 7598-7616.	6.4	41
26	A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum. Antimicrobial Agents and Chemotherapy, 2016, 60, 5262-5275.	3.2	23
27	A versatile qPCR assay to quantify trypanosomatidic infections of host cells and tissues. Medical Microbiology and Immunology, 2016, 205, 449-458.	4.8	15
28	Joining forces: first application of a rapamycinâ€induced dimerizable Cre system for conditional null mutant analysis in <i>Leishmania</i> . Molecular Microbiology, 2016, 100, 923-927.	2.5	5
29	Co-circulation of a novel phlebovirus and Massilia virus in sandflies, Portugal. Virology Journal, 2015, 12, 174.	3.4	30
30	The genetics of Leishmania virulence. Medical Microbiology and Immunology, 2015, 204, 619-634.	4.8	32
31	Geographical sequence variation in the Leishmania major virulence factor P46. Infection, Genetics and Evolution, 2015, 30, 195-205.	2.3	13
32	Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress and Chaperones, 2015, 20, 673-685.	2.9	15
33	Heat Shock Proteins of Leishmania: Chaperones in the Driver's Seat. , 2015, , 17-36.		3
34	Leishmania infantum EndoG Is an Endo/Exo-Nuclease Essential for Parasite Survival. PLoS ONE, 2014, 9, e89526.	2.5	5
35	A small heat shock protein is essential for thermotolerance and intracellular survival of <i>Leishmania donovani</i> . Journal of Cell Science, 2014, 127, 4762-73.	2.0	62
36	A novel marker, ARM58, confers antimony resistance to Leishmania spp International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 37-47.	3.4	23

JOACHIM CLOS

#	Article	IF	CITATIONS
37	Reduced Antimony Accumulation in <i>ARM58</i> -Overexpressing Leishmania infantum. Antimicrobial Agents and Chemotherapy, 2014, 58, 1565-1574.	3.2	12
38	The <scp><i>L</i></scp> <i>eishmania donovani</i> chaperone cyclophilin 40 is essential for intracellular infection independent of its stageâ€specific phosphorylation status. Molecular Microbiology, 2014, 93, 80-97.	2.5	21
39	The <scp>Hsp</scp> 90– <scp>Sti</scp> 1 interaction is critical for <i><scp>L</scp>eishmania donovani</i> proliferation in both life cycle stages. Cellular Microbiology, 2013, 15, 585-600.	2.1	49
40	The loss of virulence of histone <scp>H</scp> 1 overexpressing <scp><i>L</i></scp> <i>eishmania donovani</i> parasites is directly associated with a reduction of <scp>HSP</scp> 83 rate of translation. Molecular Microbiology, 2013, 88, 1015-1031.	2.5	13
41	Secreted virulence factors and immune evasion in visceral leishmaniasis. Journal of Leukocyte Biology, 2012, 91, 887-899.	3.3	72
42	Leishmania donovani HslV does not interact stably with HslU proteins. International Journal for Parasitology, 2012, 42, 329-339.	3.1	10
43	The co-chaperone SGT of Leishmania donovani is essential for the parasite's viability. Cell Stress and Chaperones, 2010, 15, 443-455.	2.9	28
44	LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5. International Journal for Parasitology, 2010, 40, 969-978.	3.1	26
45	Overexpression of a single <i>Leishmania major</i> gene enhances parasite infectivity <i>in vivo</i> and <i>in vitro</i> . Molecular Microbiology, 2010, 76, 1175-1190.	2.5	17
46	Phosphoproteome dynamics reveal heat-shock protein complexes specific to the <i>Leishmania donovani</i> infectious stage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8381-8386.	7.1	129
47	Leishmania Exosomes Modulate Innate and Adaptive Immune Responses through Effects on Monocytes and Dendritic Cells. Journal of Immunology, 2010, 185, 5011-5022.	0.8	273
48	An exosome-based secretion pathway is responsible for protein export from <i>Leishmania</i> and communication with macrophages. Journal of Cell Science, 2010, 123, 842-852.	2.0	410
49	One-step generation of double-allele gene replacement mutants in Leishmania donovani. International Journal for Parasitology, 2009, 39, 541-546.	3.1	21
50	Heat Shock Proteins in Protozoan Parasites – Leishmania spp Heat Shock Proteins, 2009, , 135-151.	0.2	5
51	Identification of a Leishmania infantum gene mediating resistance to â€~ and SbIII. International Journal for Parasitology, 2008, 38, 1411-1423.	3.1	57
52	Functional Cloning as a Means to Identify Leishmania Genes Involved in Drug Resistance. Mini-Reviews in Medicinal Chemistry, 2006, 6, 123-129.	2.4	16
53	Spontaneous Recovery of Pathogenicity by Leishmania major hsp100 â^' / â^' Alters the Immune Response in Mice. Infection and Immunity, 2006, 74, 6027-6036.	2.2	15
54	Complement C3 is required for the progression of cutaneous lesions and neutrophil attraction in Leishmania major infection. Medical Microbiology and Immunology, 2005, 194, 143-149.	4.8	16

JOACHIM CLOS

#	Article	IF	CITATIONS
55	Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani, CPN10. Parasites and Vectors, 2005, 4, 3.	1.9	21
56	A Leishmania donovani gene that confers accelerated recovery from stationary phase growth arrest. International Journal for Parasitology, 2004, 34, 803-811.	3.1	17
57	Developmentally induced changes of the proteome in the protozoan parasiteLeishmania donovani. Proteomics, 2003, 3, 1811-1829.	2.2	140
58	Comparison of the A2 Gene Locus in Leishmania donovani and Leishmania major and Its Control over Cutaneous Infection. Journal of Biological Chemistry, 2003, 278, 35508-35515.	3.4	99
59	Inhibition of HSP90 in Trypanosoma cruzi Induces a Stress Response but No Stage Differentiation. Eukaryotic Cell, 2002, 1, 936-943.	3.4	75
60	The heat shock protein 90 of Leishmania donovani. Medical Microbiology and Immunology, 2001, 190, 27-31.	4.8	31
61	Use of genetic complementation to identify gene(s) which specify species-specific organ tropism of Leishmania. Medical Microbiology and Immunology, 2001, 190, 43-46.	4.8	10
62	Heat shock protein 100 and the amastigote stage-specific A2 proteins of Leishmania donovani. Medical Microbiology and Immunology, 2001, 190, 47-50.	4.8	13
63	Heat Shock Protein 90 Homeostasis Controls Stage Differentiation in <i>Leishmania donovani</i> . Molecular Biology of the Cell, 2001, 12, 3307-3316.	2.1	188
64	Cross-species homologous recombination in Leishmania donovani reveals the sites of integration. Molecular and Biochemical Parasitology, 2000, 107, 123-128.	1.1	10
65	Expression and subcellular localization of cpn60 protein family members in Leishmania donovani. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 65-74.	2.4	44
66	Uniform Distribution of Transcription Complexes Over the Entire Leishmania donovani clpB (hsp100) Gene Locus. Protist, 1999, 150, 369-373.	1.5	4
67	A novel role for 100 kD heat shock proteins in the parasite Leishmania donovani. Cell Stress and Chaperones, 1999, 4, 191.	2.9	61
68	Chemical Stress does not Induce Heat Shock Protein Synthesis in Leishmania donovani. Protist, 1998, 149, 167-172.	1.5	11
69	Leishmania donovani Heat Shock Protein 100. Journal of Biological Chemistry, 1998, 273, 6488-6494.	3.4	82
70	The Genomic Organization of theHSP83Gene Locus Is Conserved in ThreeLeishmaniaSpecies. Experimental Parasitology, 1996, 82, 225-228.	1.2	18
71	A member of the clpb family of stress proteins is expressed during heat shock in Leishmania spp. Molecular and Biochemical Parasitology, 1995, 70, 107-118.	1.1	58
72	Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature, 1993, 364, 252-255.	27.8	93

#	Article	IF	CITATIONS
73	Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature, 1991, 353, 822-827.	27.8	387
74	Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell, 1990, 63, 1085-1097.	28.9	372