Shujun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9277372/publications.pdf

Version: 2024-02-01

567144 794469 20 1,820 15 19 citations h-index g-index papers 21 21 21 3247 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 2009, 336, 592-598.	5.0	379
2	Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48, 1815-1823.	5.4	276
3	Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 2010, 48, 4315-4322.	5.4	198
4	Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon, 2015, 82, 304-313.	5.4	183
5	The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale, 2016, 8, 7449-7458.	2.8	125
6	The toxicity of graphene quantum dots. RSC Advances, 2016, 6, 89867-89878.	1.7	124
7	Laserâ€Reduced Graphene: Synthesis, Properties, and Applications. Advanced Materials Technologies, 2018, 3, 1700315.	3.0	116
8	Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 2011, 49, 2905-2916.	5.4	88
9	Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon, 2019, 141, 83-91.	5.4	68
10	Quantum-confined bandgap narrowing of TiO ₂ nanoparticles by graphene quantum dots for visible-light-driven applications. Chemical Communications, 2016, 52, 9208-9211.	2.2	64
11	Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow. Reaction Chemistry and Engineering, 2018, 3, 164-170.	1.9	44
12	Scalable Production of Graphene Oxide Using a 3D-Printed Packed-Bed Electrochemical Reactor with a Boron-Doped Diamond Electrode. ACS Applied Nano Materials, 2019, 2, 867-878.	2.4	41
13	Optical Dephasing of Triply Ionized Rare Earths in Transparent Glass Ceramics Containing LaF ₃ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2008, 8, 1214-1217.	0.9	23
14	Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2010, 10, 7070-7074.	0.9	19
15	Tailoring the edges of graphene quantum dots to establish localized π–π interactions with aromatic molecules. RSC Advances, 2015, 5, 41248-41254.	1.7	19
16	Localized Surface Plasmon Enhanced Laser Reduction of Graphene Oxide for Wearable Strain Sensor. Advanced Materials Technologies, 2021, 6, 2001191.	3.0	16
17	Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications. , 2019, , $181\mathchi{ ext{-}}203$.		15
18	Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core–Shell Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5673-5679.	2.1	10

Shujun Wang

#	Article	IF	CITATION
19	Tungstenâ€Doped Nanocrystalline V ₆ O ₁₃ Nanoparticles as Lowâ€Cost and Highâ€Performance Electrodes for Energy Storage Devices. Energy Technology, 2019, 7, 1801041.	1.8	10
20	Quasi-Continuously Tuning the Size of Graphene Quantum Dots via an Edge-Etching Mechanism. MRS Advances, 2016, 1, 1459-1467.	0.5	2