Peng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9277286/publications.pdf Version: 2024-02-01

		331259	301761
39	1,689	21	39
papers	citations	h-index	g-index
43	43	43	2595
all docs	docs citations	times ranked	citing authors

DENC 7HAO

#	Article	IF	CITATIONS
1	A colorimetric assay for cholesterol based on the encapsulation of multienzyme in leaf-shape crossed ZIF-L. Chinese Chemical Letters, 2023, 34, 107510.	4.8	2
2	The role of S100B/RAGE-enhanced ADAM17 activation in endothelial glycocalyx shedding after traumatic brain injury. Journal of Neuroinflammation, 2022, 19, 46.	3.1	21
3	Electrochemical sensor based on reduced graphene oxide supported dumbbell-shaped CuCo2O4 for real-time monitoring of H2O2 released from cells. Microchemical Journal, 2021, 160, 105521.	2.3	27
4	The robust peroxidase mimics within metal–organic frameworks for the sensitivity detection of H ₂ O ₂ and glucose in serum. New Journal of Chemistry, 2021, 45, 19565-19571.	1.4	5
5	Multienzymeâ€Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy. Small, 2021, 17, e2005865.	5.2	74
6	Neuroprotective effects of Shende'an tablet in the Parkinson's disease model. Chinese Medicine, 2021, 16, 18.	1.6	5
7	Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic photothermal-chemo tumor therapy. Nano Research, 2021, 14, 3988-3998.	5.8	14
8	Cerebral Circulation Time Is a Potential Predictor of Disabling Ischemic Cerebrovascular Events in Patients With Non-disabling Middle Cerebral Artery Stenosis. Frontiers in Neurology, 2021, 12, 653752.	1.1	3
9	Lanthanide-functionalized metal-organic frameworks based ratiometric fluorescent sensor array for identification and determination of antibiotics. Talanta, 2021, 231, 122366.	2.9	45
10	A Sensitive Electrochemical Sensor Based on Dual Co-Doped N, P-rGO for Simultaneous Determination of Hydroquinone and Catechol. Journal of the Electrochemical Society, 2021, 168, 017514.	1.3	8
11	An imine-linked covalent organic framework for renewable and sensitive determination of antibiotic. Analytica Chimica Acta, 2021, 1188, 339191.	2.6	15
12	"French fries―like luminescent metal organic frameworks for the fluorescence determination of cytochrome c released by apoptotic cells and screening of anticancer drug activity. Mikrochimica Acta, 2020, 187, 221.	2.5	12
13	Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing. Journal of Electroanalytical Chemistry, 2020, 862, 114018.	1.9	37
14	Black phosphorus quantum dots nanocomposites based activatable bimodal imaging and determination of intracellular glutathione. Sensors and Actuators B: Chemical, 2020, 321, 128518.	4.0	15
15	An Excellent Electrochemical Sensor Based on Highly Porous Gold Film Modified Gold Electrode for Detecting Quercetin in Food and Medicine. Journal of the Electrochemical Society, 2020, 167, 047514.	1.3	17
16	The reversible surface redox of polymer dots for the assay of total antioxidant capacity in food samples. Microchemical Journal, 2020, 156, 104805.	2.3	7
17	Sensitive Detection of Acetaminophen Based on N, P-Co-Doped Carbon Microspheres Modified Electrode. Journal of the Electrochemical Society, 2019, 166, B1491-B1496.	1.3	8
18	Recent Advance in Polymer Based Microspheric Systems for Controlled Protein and Peptide Delivery. Current Medicinal Chemistry, 2019, 26, 2285-2296.	1.2	39

Peng Zhao

#	Article	IF	CITATIONS
19	A Ratiometric Electrochemical Sensor with Integrated Probe for the Assay of α-glucosidase Activity and Screening of Its Inhibitors. Journal of the Electrochemical Society, 2019, 166, B133-B140.	1.3	27
20	A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells. Sensors and Actuators B: Chemical, 2019, 290, 249-257.	4.0	81
21	Simultaneous Determination of Hydroquinone, Catechol and Resorcinol with High Selectivity Based on Hollow Nitrogen-Doped Mesoporous Carbon Spheres Decorated Graphene. Journal of the Electrochemical Society, 2018, 165, B212-B219.	1.3	37
22	Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1483.	3.3	113
23	iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging. Journal of Colloid and Interface Science, 2018, 509, 515-521.	5.0	95
24	One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sensors and Actuators B: Chemical, 2018, 270, 530-537.	4.0	34
25	Development of near-infrared ratiometric fluorescent probe based on cationic conjugated polymer and CdTe/CdS QDs for label-free determination of glucose in human body fluids. Biosensors and Bioelectronics, 2017, 95, 41-47.	5.3	61
26	Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Analytical and Bioanalytical Chemistry, 2017, 409, 6655-6662.	1.9	21
27	The determination of cystatin C in serum based on label-free and near-infrared light emitted PbS@BSA QDs. Journal of Materials Chemistry B, 2016, 4, 4258-4262.	2.9	24
28	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
29	Fabrication of an electrochemical sensor based on spiropyran for sensitive and selective detection of fluoride ion. Analytica Chimica Acta, 2016, 918, 97-102.	2.6	44
30	A universal platform for building molecular logic circuits based on a reconfigurable three-dimensional DNA nanostructure. Chemical Science, 2015, 6, 3556-3564.	3.7	61
31	A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochimica Acta, 2015, 178, 407-413.	2.6	42
32	Electrochemical detection of type 2 diabetes mellitus-related SNP via DNA-mediated growth of silver nanoparticles on single walled carbon nanotubes. Chemical Communications, 2015, 51, 15704-15707.	2.2	15
33	Near-Infrared Dual-Emission Quantum Dots–Gold Nanoclusters Nanohybrid via Co-Template Synthesis for Ratiometric Fluorescent Detection and Bioimaging of Ascorbic Acid In Vitro and In Vivo. Analytical Chemistry, 2015, 87, 9998-10005.	3.2	127
34	Design of multiplex logic gates: Combining regulation of DNA structure with logical calculation. Science China Chemistry, 2014, 57, 453-458.	4.2	2
35	Development of spiropyran-based electrochemical sensor via simultaneous photochemical and target-activatable electron transfer. Biosensors and Bioelectronics, 2014, 62, 151-157.	5.3	23
36	Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide. Methods, 2013, 64, 299-304.	1.9	19

Peng Zhao

#	Article	IF	CITATIONS
37	Versatile Electrochemiluminescent Biosensor for Protein–Nucleic Acid Interaction Based on the Unique Quenching Effect of Deoxyguanosine-5′-phosphate on Electrochemiluminescence of CdTe/ZnS Quantum Dots. Analytical Chemistry, 2013, 85, 6279-6286.	3.2	46
38	Nitrate enhanced electrochemiluminescence determination of tris(2,3-dibromopropyl) isocyanurate with a gold nanoparticles-modified gold electrode. Analyst, The, 2011, 136, 1952.	1.7	14
39	Identification of Portulaca oleracea L. from different sources using GC–MS and FT-IR spectroscopy. Talanta, 2010, 81, 129-135.	2.9	53