
Conor S Boland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9277097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	13.3	1,958
2	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	7.3	708
3	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	6.0	676
4	Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials, 2017, 29, 243-255.	3.2	401
5	High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4, 560-567.	19.8	281
6	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253
7	Liquid Exfoliated Co(OH) ₂ Nanosheets as Low ost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
8	Enabling Flexible Heterostructures for Liâ€lon Battery Anodes Based on Nanotube and Liquidâ€Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017, 13, 1701677.	5.2	71
9	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	7.3	52
10	Graphene-coated polymer foams as tuneable impact sensors. Nanoscale, 2018, 10, 5366-5375.	2.8	50
11	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors. Nanoscale, 2017, 9, 18507-18515.	2.8	48
12	High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon, 2016, 99, 280-288.	5.4	40
13	Stumbling through the Research Wilderness, Standard Methods To Shine Light on Electrically Conductive Nanocomposites for Future Healthcare Monitoring. ACS Nano, 2019, 13, 13627-13636.	7.3	35
14	The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. Chemistry of Materials, 2018, 30, 5245-5255.	3.2	33
15	PtSe ₂ grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Materials, 2019, 6, 045029.	2.0	33
16	Quantifying the Contributing Factors toward Signal Fatigue in Nanocomposite Strain Sensors. ACS Applied Polymer Materials, 2020, 2, 3474-3480.	2.0	17
17	Optimising composite viscosity leads to high sensitivity electromechancial sensors. 2D Materials, 2018, 5, 035042.	2.0	16
18	Printable Gâ€Putty for Frequency―and Rateâ€Independent, Highâ€Performance Strain Sensors. Small, 2021, 17, e2006542.	' 5.2	16

CONOR S BOLAND

#	Article	IF	CITATIONS
19	Approaching the Limit of Electromechanical Performance in Mixed-Phase Nanocomposites. ACS Applied Nano Materials, 2020, 3, 11240-11246.	2.4	10
20	Transparent conducting films from NbSe ₃ nanowires. Nanotechnology, 2011, 22, 285202.	1.3	8
21	Low cost, high performance ultrafiltration membranes from glass fiber-PTFE–graphene composites. Scientific Reports, 2020, 10, 21123.	1.6	8
22	Highly Sensitive Composite Foam Bodily Sensors Based on the g-Putty Ink Soaking Procedure. ACS Applied Materials & Interfaces, 2021, 13, 60489-60497.	4.0	7