Jonathan J Keats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9276650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood, 2022, 139, 2471-2482.	1.4	12
2	Structural variants shape the genomic landscape and clinical outcome of multiple myeloma. Blood Cancer Journal, 2022, 12, .	6.2	7
3	Perspectives on the Risk-Stratified Treatment of Multiple Myeloma. Blood Cancer Discovery, 2022, 3, 273-284.	5.0	24
4	Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia, 2021, 35, 189-200.	7.2	56
5	The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia, 2021, 35, 796-808.	7.2	19
6	Chromatin Accessibility Identifies Regulatory Elements Predictive of Gene Expression and Disease Outcome in Multiple Myeloma. Clinical Cancer Research, 2021, 27, 3178-3189.	7.0	15
7	Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression. Blood, 2021, 137, 3604-3615.	1.4	44
8	Improving prognostic assignment in older adults with multiple myeloma using acquired genetic features, clonal hemopoiesis and telomere length. Leukemia, 2021, , .	7.2	8
9	Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing. Nature Biotechnology, 2021, 39, 1151-1160.	17.5	39
10	Plasma cell leukemia: A review of the molecular classification, diagnosis, and evidenced-based treatment. Leukemia Research, 2021, 111, 106687.	0.8	18
11	CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma. JCI Insight, 2021, 6, .	5.0	15
12	Genomic and Transcriptomic Analysis of Relapsed and Refractory Childhood Solid Tumors Reveals a Diverse Molecular Landscape and Mechanisms of Immune Evasion. Cancer Research, 2021, 81, 5818-5832.	0.9	10
13	Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. Science Advances, 2021, 7, eabg9551.	10.3	49
14	Microhomology-mediated end joining drives complex rearrangements and overexpression of <i>MYC</i> and <i>PVT1</i> in multiple myeloma. Haematologica, 2020, 105, 1055-1066.	3.5	42
15	Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia, 2020, 34, 589-603.	7.2	41
16	MYC dysregulation in the progression of multiple myeloma. Leukemia, 2020, 34, 322-326.	7.2	108
17	Glucocorticoid receptor expression in multiple myeloma patients is a predictor of survival. Leukemia and Lymphoma, 2020, 61, 3493-3497.	1.3	4
18	Revealing the Impact of Structural Variants in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 258-273.	5.0	81

JONATHAN J KEATS

#	Article	IF	CITATIONS
19	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	12.8	98
20	The CCND1 c.870G risk allele is enriched in individuals of African ancestry with plasma cell dyscrasias. Blood Cancer Journal, 2020, 10, 39.	6.2	4
21	câ€MYC expression and maturity phenotypes are associated with outcome benefit from addition of ixazomib to lenalidomideâ€dexamethasone in myeloma. European Journal of Haematology, 2020, 105, 35-46.	2.2	8
22	Early Relapse Risk in Patients with Newly Diagnosed Multiple Myeloma Characterized by Next-generation Sequencing. Clinical Cancer Research, 2020, 26, 4832-4841.	7.0	33
23	MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1. Oncotarget, 2020, 11, 727-739.	1.8	12
24	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	7.2	313
25	Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple myeloma. American Journal of Hematology, 2019, 94, 1364-1373.	4.1	22
26	Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nature Communications, 2019, 10, 1911.	12.8	109
27	Great Lakes Biorepository Research Network's Annual Biobanking Symposium: A Focus on Precision Medicine. Biopreservation and Biobanking, 2019, 17, 598-602.	1.0	0
28	MiR-16 regulates crosstalk in NF-lºB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages. JCI Insight, 2019, 4, .	5.0	33
29	Copper 64–labeled daratumumab as a PET/CT imaging tracer for multiple myeloma. Blood, 2018, 131, 741-745.	1.4	54
30	Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nature Medicine, 2018, 24, 1867-1876.	30.7	179
31	Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncolmmunology, 2018, 7, e1486948.	4.6	41
32	Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	1.4	335
33	RNA Polymerase I Inhibition with CXâ€5461 as a Novel Therapeutic Strategy to Target <i>MYC</i> in Multiple Myeloma. British Journal of Haematology, 2017, 177, 80-94.	2.5	51
34	UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition. Cell Reports, 2017, 21, 628-640.	6.4	106
35	Comprehensive molecular profiling of 718 Multiple Myelomas reveals significant differences in mutation frequencies between African and European descent cases. PLoS Genetics, 2017, 13, e1007087.	3.5	66
36	A Comparison of Clinical FISH and Sequencing Based FISH Estimates in Multiple Myeloma: An Mmrf Commpass Analysis. Blood, 2016, 128, 374-374.	1.4	14

JONATHAN J KEATS

#	Article	IF	CITATIONS
37	Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia, 2014, 28, 1725-1735.	7.2	221
38	Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell, 2014, 25, 91-101.	16.8	847
39	Abstract 898: Expression of immunoglobulin and its receptor are major determinants of multiple myeloma patient sensitivity to proteasome inhibitors. , 2014, , .		1
40	Abstract 2375: A method to identify copy number aberrations (CNAs) from whole exome sequence (WES) data and its application to multiple myeloma cell lines and patient samples. , 2014, , .		0
41	Xbp1s-Negative Tumor B Cells and Pre-Plasmablasts Mediate Therapeutic Proteasome Inhibitor Resistance in Multiple Myeloma. Cancer Cell, 2013, 24, 289-304.	16.8	298
42	Interim Analysis Of The Mmrf Commpass Trial, a Longitudinal Study In Multiple Myeloma Relating Clinical Outcomes To Genomic and Immunophenotypic Profiles. Blood, 2013, 122, 532-532.	1.4	34
43	Abstract 5209: Characterization of an isogenic model system for KDM6A/UTX loss in multiple myeloma Cancer Research, 2013, 73, 5209-5209.	0.9	1
44	Abstract 806: RNA sequencing based prognostic indexes show a high degree of correlation with historic array based gene expression measurements in multiple myeloma , 2013, , .		0
45	Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities. Modern Pathology, 2012, 25, 651-660.	5.5	66
46	Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood, 2012, 120, 1060-1066.	1.4	357
47	Clonal competition with alternating dominance in multiple myeloma. Blood, 2012, 120, 1067-1076.	1.4	575
48	Abstract 4561: The MMRF CoMMpassSM Study: A prospective, longitudinal, multicenter observational study in newly diagnosed multiple myeloma patients to assess the relationship between patient outcomes, treatment regimens and molecular profiles. , 2012, , .		0
49	RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood, 2011, 117, 3847-3857.	1.4	97
50	Initial genome sequencing and analysis of multiple myeloma. Nature, 2011, 471, 467-472.	27.8	1,288
51	Abstract 4838: Longitudinal assessment of high risk t(4;14) multiple myeloma using next generation whole genome sequencing. , 2011, , .		0
52	Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood, 2010, 115, 3541-3552.	1.4	253
53	Abstract 4822: Analysis of somatic copy number alterations associated with poor prognosis and progression of multiple myeloma in African Americans. , 2010, , .		0
54	Spontaneous Remission in a Patient With t(4;14) Translocation Multiple Myeloma. Journal of Clinical Oncology, 2009, 27, e194-e197.	1.6	4

JONATHAN J KEATS

#	Article	IF	CITATIONS
55	ldentification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-κB Signaling Pathways in Waldenstrol^m's Macroglobulinemia. Cancer Research, 2009, 69, 3579-3588.	0.9	154
56	High-Resolution Genomic Analysis in Waldenström's Macroglobulinemia Identifies Disease-Specific and Common Abnormalities with Marginal Zone Lymphomas. Clinical Lymphoma and Myeloma, 2009, 9, 39-42.	1.4	32
57	Targeting NF-κB Signaling in Multiple Myeloma. Clinical Lymphoma and Myeloma, 2009, 9, S14-S16.	1.4	1
58	Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nature Immunology, 2008, 9, 1364-1370.	14.5	552
59	The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. British Journal of Haematology, 2008, 140, 295-302.	2.5	58
60	Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells. Leukemia and Lymphoma, 2008, 49, 559-569.	1.3	51
61	Loss of p53 Is a Marker of Progression in Plasma Cell Neoplasias and Is a Negative Prognostic Factor in Relapsed Disease Blood, 2008, 112, 1663-1663.	1.4	1
62	Promiscuous Mutations Activate the Noncanonical NF-κB Pathway in Multiple Myeloma. Cancer Cell, 2007, 12, 131-144.	16.8	941
63	Multiple Myeloma (MM) Is Characterized by Genomic Instability Regardless of Ploidy Categories and Degree of Karyotypic Complexity Is an Important Prognostic Factor Blood, 2007, 110, 1476-1476.	1.4	0
64	Identification of Survival Critical Genomic Gains or Losses in Myeloma (MM) Using Array-Comparative Genomic Hybridization (aCGH) Blood, 2007, 110, 2471-2471.	1.4	0
65	Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leukemia and Lymphoma, 2006, 47, 2289-2300.	1.3	90
66	Aurora Kinases as Therapeutic Targets in Multiple Myeloma Blood, 2006, 108, 847-847.	1.4	12
67	SSX Cancer Testis Antigens are Expressed in Most Multiple Myeloma Patients. Journal of Immunotherapy, 2005, 28, 564-575.	2.4	53
68	Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood, 2005, 105, 4060-4069.	1.4	159
69	Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Research, 2005, 65, 850-60.	0.9	73
70	RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood, 2004, 104, 1151-1158.	1.4	85
71	RHAMM Is a Centrosomal Protein That Interacts with Dynein and Maintains Spindle Pole Stability. Molecular Biology of the Cell, 2003, 14, 2262-2276.	2.1	167
72	In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood, 2003, 101, 1520-1529.	1.4	356