Victor V Gusarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9276599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific Features of BiFeO3Formation in a Mixture of Bismuth(III) and Iron(III) Oxides. Russian Journal of General Chemistry, 2003, 73, 1676-1680.	0.3	147
2	Properties of aurivillius phases in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2006, 42, 189-195.	0.2	110
3	Preparation of Nanocrystalline Alumina under Hydrothermal Conditions. Inorganic Materials, 2005, 41, 460-467.	0.2	73
4	Aurivillius Phases in the Bi4Ti3O12/BiFeO3 System: Thermal Behaviour and Crystal Structure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1603-1608.	0.6	70
5	Synthesis of Nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 Silicates at Elevated Temperatures and Pressures. Inorganic Materials, 2005, 41, 743-749.	0.2	69
6	Complex aluminates RE2SrAl2O7 (REÂ=ÂLa, Nd, Sm–Ho): Cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth. Solid State Sciences, 2003, 5, 343-349.	1.5	67
7	New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties. Polymer, 2007, 48, 1306-1315.	1.8	65
8	Formation of Mg3Si2O5(OH)4Nanotubes under Hydrothermal Conditions. Glass Physics and Chemistry, 2004, 30, 51-55.	0.2	59
9	Synthesis of A m – 1Bi2M m O3m + 3 Compounds in the Bi4Ti3O12–BiFeO3 System. Inorganic Materials, 2002, 38, 723-729.	0.2	50
10	Structural changes in the homologous series of the Aurivillius phases Bi+1Feâ^'3Ti3O3+3. Journal of Alloys and Compounds, 2012, 528, 103-108.	2.8	50
11	Phase diagram of the ZrO2–FeO system. Journal of Nuclear Materials, 2006, 348, 114-121.	1.3	45
12	The thermal effect of melting in polycrystalline systems. Thermochimica Acta, 1995, 256, 467-472.	1.2	43
13	Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polyimide nanocomposites. EXPRESS Polymer Letters, 2008, 2, 485-493.	1.1	40
14	Corium phase equilibria based on MASCA, METCOR and CORPHAD results. Nuclear Engineering and Design, 2008, 238, 2761-2771.	0.8	37
15	Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107598.	1.8	34
16	Phase states in the Bi4Ti3O12-BiFeO3 section in the Bi2O3-TiO2-Fe2O3 system. Russian Journal of Inorganic Chemistry, 2011, 56, 616-620.	0.3	33
17	The Lu2O3–Al2O3 system: Relationships for equilibrium-phase and supercooled states. Journal of Crystal Growth, 2006, 293, 74-77.	0.7	32
18	Phase diagram of the LaFeO3-LaSrFeO4 system, Glass Physics and Chemistry, 2006, 32, 674-676,	0.2	30

#	Article	IF	CITATIONS
19	Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method. Russian Journal of General Chemistry, 2016, 86, 2256-2262.	0.3	29
20	Phase diagram of the UO2–FeO1+x system. Journal of Nuclear Materials, 2007, 362, 46-52.	1.3	28
21	Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceramics International, 2018, 44, 20906-20912.	2.3	27
22	Formation of ZrO2 Nanocrystals in Hydrothermal Media of Various Chemical Compositions. Russian Journal of General Chemistry, 2002, 72, 849-853.	0.3	26
23	Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry, 2009, 35, 205-209.	0.2	25
24	Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russian Journal of General Chemistry, 2010, 80, 1136-1142.	0.3	25
25	Mechanism of Formation of Bi4Ti3O12. Russian Journal of General Chemistry, 2002, 72, 1038-1040.	0.3	24
26	Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. Glass Physics and Chemistry, 2008, 34, 756.	0.2	23
27	Hydrothermal Synthesis of Magnesium Silicate Montmorillonite for Polymer-Clay Nanocomposites. Russian Journal of Applied Chemistry, 2005, 78, 26-32.	0.1	22
28	Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure. Russian Journal of General Chemistry, 2007, 77, 1669-1676.	0.3	22
29	Electrical properties of perovskite-like compounds in the Bi2O3-Fe2O3-TiO2 system. Inorganic Materials, 2011, 47, 420-425.	0.2	22
30	The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 428-437.	0.2	22
31	Phase relationships in the SiO2-TiO2 system. Russian Journal of Inorganic Chemistry, 2011, 56, 1464-1471.	0.3	21
32	Comparative Energy Modeling of Multiwalled Mg ₃ Si ₂ O ₅ (OH) ₄ and Ni ₃ Si ₂ O ₅ (OH) ₄ Nanoscroll Growth. Journal of Physical Chemistry C, 2017, 121, 12495-12502.	1.5	21
33	Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russian Journal of Inorganic Chemistry, 2007, 52, 338-344.	0.3	20
34	Modification of films of heat-resistant polyimides by adding hydrosilicate and carbon nanoparticles of various geometries. Russian Journal of General Chemistry, 2007, 77, 1158-1163.	0.3	20
35	Aggregation of Synthetic Chrysotile Nanotubes in the Bulk and in Solution Probed by Nitrogen Adsorption and Viscosity Measurements. Journal of Physical Chemistry C, 2008, 112, 12943-12950.	1.5	20
36	Effect of surface melting on the formation and growth of nanocrystals in the Bi2O3-Fe2O3 system. Russian Journal of General Chemistry, 2013, 83, 2251-2253.	0.3	20

#	Article	IF	CITATIONS
37	Experimental study of transient phenomena in the three-liquid oxidic-metallic corium pool. Nuclear Engineering and Design, 2018, 332, 31-37.	0.8	20
38	Experimental studies of oxidic molten corium–vessel steel interaction. Nuclear Engineering and Design, 2001, 210, 193-224.	0.8	18
39	Corrosion of vessel steel during its interaction with molten corium. Nuclear Engineering and Design, 2006, 236, 1810-1829.	0.8	18
40	Glycine-nitrate combustion synthesis of nonstoichiometric Mg-Fe spinel nanopowders. Inorganic Materials, 2014, 50, 1247-1251.	0.2	17
41	Eutectic crystallization in the FeO1.5–UO2+x–ZrO2 system. Journal of Nuclear Materials, 2009, 389, 52-56.	1.3	16
42	Phase relations in the ZrO2-FeO system. Russian Journal of Inorganic Chemistry, 2006, 51, 325-331.	0.3	15
43	Mechanism of formation of the complex oxide Gd2SrFe2O7. Russian Journal of General Chemistry, 2007, 77, 973-978.	0.3	15
44	Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russian Journal of Applied Chemistry, 2007, 80, 2142-2148.	0.1	15
45	Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites. Glass Physics and Chemistry, 2007, 33, 237-241.	0.2	15
46	Phase equilibria in the FeO1+x–UO2–ZrO2 system in the FeO1+x-enriched domain. Journal of Nuclear Materials, 2010, 400, 119-126.	1.3	15
47	The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russian Journal of Applied Chemistry, 2014, 87, 1417-1421.	0.1	15
48	Synthesis and properties of materials based on layered calcium and bismuth cobaltites. Russian Journal of Applied Chemistry, 2015, 88, 1241-1247.	0.1	15
49	Magnetic properties of Aurivillius phases Bim+1Femâ^'3Ti3O3m+3 with m=5.5, 7, 8. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 51-56.	1.7	15
50	WER vessel steel corrosion at interaction with molten corium in oxidizing atmosphere. Nuclear Engineering and Design, 2009, 239, 1103-1112.	0.8	14
51	Y2O3-Ga2O3 phase diagram. Russian Journal of Inorganic Chemistry, 2009, 54, 624-629.	0.3	14
52	Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate. Inorganic Materials, 2011, 47, 1111-1115.	0.2	14
53	Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russian Journal of Applied Chemistry, 2016, 89, 851-856.	0.1	14
54	Synthesis of Nanotubular Nickel Hydrosilicates and Nickel-Magnesium Hydrosilicates under Hydrothermal Conditions. Glass Physics and Chemistry, 2005, 31, 797-802.	0.2	13

#	Article	IF	CITATIONS
55	Energy of formation of chrysotile nanotubes. Russian Journal of General Chemistry, 2014, 84, 2359-2363.	0.3	13
56	Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products. Russian Journal of Inorganic Chemistry, 2015, 60, 1193-1198.	0.3	13
57	Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, 85, 1370-1375.	0.3	13
58	Magnetic properties of synthetic Ni ₃ Si ₂ O ₅ (OH) ₄ nanotubes. Europhysics Letters, 2016, 113, 47006.	0.7	13
59	Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 206-214.	0.2	13
60	Kinetics of Formation of Ruddlesden-Popper Phases: I. Mechanism of La2SrAl2O7 Formation. Russian Journal of General Chemistry, 2001, 71, 1181-1185.	0.3	12
61	Corrosion of vessel steel during its interaction with molten corium. Nuclear Engineering and Design, 2006, 236, 1362-1370.	0.8	12
62	Phase and chemical transformations in the SiO2-Fe2O3(Fe3O4) system at various oxygen partial pressures. Russian Journal of Inorganic Chemistry, 2006, 51, 118-125.	0.3	12
63	Thermal behavior of layered perovskite-like compounds in the Bi4Ti3O12-BiFeO3 system. Glass Physics and Chemistry, 2007, 33, 608-612.	0.2	12
64	Effect of heat treatment on structural-chemical transformations in magnesium hydrosilicate [Mg3Si2O5(OH)4] nanotubes. Russian Journal of Applied Chemistry, 2009, 82, 2079-2086.	0.1	12
65	Preparation and thermal transformations of nanocrystals in the LaPO4-LuPO4-H2O system. Glass Physics and Chemistry, 2009, 35, 431-435.	0.2	12
66	Quality improvements of thermodynamic data applied to corium interactions for severe accident modelling in SARNET2. Annals of Nuclear Energy, 2014, 74, 110-124.	0.9	12
67	Energy model of radial growth of a nanotubular crystal. Technical Physics Letters, 2016, 42, 55-58.	0.2	12
68	Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll. Materials Letters, 2016, 171, 68-71.	1.3	12
69	Title is missing!. Inorganic Materials, 2002, 38, 227-235.	0.2	11
70	Kinetics of Ruddlesden-Popper Phase Formation: II. Mechanism of Nd2SrAl2O7 and Sm2SrAl2O7 Formation. Russian Journal of General Chemistry, 2003, 73, 43-47.	0.3	11
71	Phase equilibria in the LaAlO3-LaSrAlO4 system. Glass Physics and Chemistry, 2004, 30, 564-567.	0.2	11
72	Phase Equilibria in the Gd2O3-SrAl2O4 System. Glass Physics and Chemistry, 2005, 31, 808-811.	0.2	11

#	Article	IF	CITATIONS
73	Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russian Journal of Inorganic Chemistry, 2006, 51, 1538-1542.	0.3	11
74	Magnetic properties of complex oxides Gd2SrM2O7 (M = Fe, Al). Russian Journal of General Chemistry, 2008, 78, 2000-2001.	0.3	11
75	Nucleation in media in which nanoparticles of another phase are distributed. Doklady Physical Chemistry, 2009, 424, 43-45.	0.2	11
76	Structural stabilization of Fe4+ lons in perovskite-like phases based on the BiFeO3-SrFeO y system. Glass Physics and Chemistry, 2009, 35, 313-319.	0.2	11
77	Synthesis, mutual solubility, and thermal behavior of nanocrystals in the LaPO4-YPO4-H2O system. Glass Physics and Chemistry, 2010, 36, 351-357.	0.2	11
78	Thermal behavior of LaPO4·nH2O and NdPO4·nH2O nanopowders. Journal of Thermal Analysis and Calorimetry, 2010, 102, 809-811.	2.0	11
79	Peculiarities of layered perovskite-related GdSrFeO4 compound solid state synthesis. Journal of Alloys and Compounds, 2011, 509, 1523-1528.	2.8	11
80	Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls. Russian Journal of Applied Chemistry, 2015, 88, 1928-1935.	0.1	11
81	Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls. Doklady Physical Chemistry, 2015, 460, 42-44.	0.2	11
82	Cation Redistribution along the Spiral of Niâ€Doped Phyllosilicate Nanoscrolls: Energy Modelling and STEM/EDS Study. ChemPhysChem, 2019, 20, 719-726.	1.0	11
83	Crystal structure and optical properties of the Bi–Fe–W–O pyrochlore phase synthesized via a hydrothermal method. Journal of Alloys and Compounds, 2021, 889, 161598.	2.8	11
84	Simulation of the formation of nanorolls. Glass Physics and Chemistry, 2007, 33, 315-319.	0.2	10
85	Thermal stability and catalytic properties of the composite amorphous Al2O3-nanocrystals ZrO2. Russian Journal of Applied Chemistry, 2009, 82, 217-221.	0.1	10
86	Formation and evolution of nanoscroll ensembles based on layered-structure compounds. Doklady Physics, 2009, 54, 491-493.	0.2	10
87	Features of the phase formation in the nanocomposites. Russian Journal of General Chemistry, 2010, 80, 385-390.	0.3	10
88	Mechanism of the nanocrystals formation of the spinel structure in the MgO-Al2O3-H2O system under the hydrothermal conditions. Russian Journal of General Chemistry, 2011, 81, 2222-2230.	0.3	10
89	Influence of component ratio in the compound (Mg,Fe)3Si2O5(OH)4 on the formation of nanotubular and platelike particles. Russian Journal of Applied Chemistry, 2013, 86, 1633-1637.	0.1	10
90	The thermal behavior of mixed-layer Aurivillius phase Bi13Fe5Ti6O39. Journal of Thermal Analysis and Calorimetry, 2018, 131, 473-478.	2.0	10

#	Article	IF	CITATIONS
91	Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, , 866-874.	0.2	10
92	Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Physics, Chemistry, Mathematics, 2017, , 620-627.	0.2	10
93	Zirconia-based nanocrystals in the ZrO2-In2O3 system. Inorganic Materials, 2006, 42, 1072-1075.	0.2	9
94	Effect of ZrO2 nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO2-Al2O3 and ZrO2-SiO2 systems. Glass Physics and Chemistry, 2006, 32, 162-166.	0.2	9
95	The interaction of nuclear reactor core melt with oxide sacrificial material of localization device for a nuclear power plant with water-moderated water-cooled power reactor. High Temperature, 2007, 45, 22-31.	0.1	9
96	Mechanism and kinetics of formation of La2SrFe2O7 and Nb2SrFe2O7. Russian Journal of General Chemistry, 2007, 77, 979-981.	0.3	9
97	Critical heat flux in a boiling aqueous dispersion of nanoparticles. Technical Physics Letters, 2009, 35, 440-442.	0.2	9
98	Influence of corium oxidation on fission product release from molten pool. Nuclear Engineering and Design, 2010, 240, 1229-1241.	0.8	9
99	New sacrificial material for ex-vessel core catcher. Journal of Nuclear Materials, 2015, 467, 778-784.	1.3	9
100	Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	9
101	Oxidation effects during corium melt in-vessel retention. Nuclear Engineering and Design, 2016, 305, 389-399.	0.8	9
102	Flows in two-dimensional non-autonomous phases in polycrystalline systems. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1996, 18, 799-805.	0.4	8
103	Phase Relationships in the NaPO3–Al2O3 Glass-Forming System. Glass Physics and Chemistry, 2002, 28, 309-316.	0.2	8
104	Kinetics of Ruddlesden-Popper Phase Formation: III. Mechanism of Gd2SrAl2O7 Formation. Russian Journal of General Chemistry, 2003, 73, 684-688.	0.3	8
105	Physicochemical modeling and analysis of the interaction between a core melt of the nuclear reactor and a sacrificial material. Glass Physics and Chemistry, 2005, 31, 53-66.	0.2	8
106	Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russian Journal of General Chemistry, 2014, 84, 804-809.	0.3	8
107	Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention. Nuclear Engineering and Design, 2014, 278, 310-316.	0.8	8
108	Hydrothermal synthesis, phase formation and crystal chemistry of the pyrochlore/Bi2WO6 and pyrochlore/α–Fe2O3 composites in the Bi2O3–Fe2O3–WO3 system. Journal of Solid State Chemistry, 2020, 282, 121064.	1.4	8

#	Article	IF	CITATIONS
109	Subsolidus phase equilibria in the GdFeO3-SrFeO3- system in air. Ceramics International, 2020, 46, 24526-24533.	2.3	8
110	Choice of Buffer Material for the Containment Trap for VVÉR-1000 Core Melt. Atomic Energy, 2002, 92, 5-14.	0.1	7
111	Influence of iron on the kinetics of formation of chrysotile nanotubes of composition (Mg,) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tr
112	Crystallization and thermal transformations in nanocrystals of the YPO4-LuPO4-H2O system. Glass Physics and Chemistry, 2007, 33, 169-173.	0.2	7
113	Effect of the phase composition of the starting mixture on the formation of the layered perovskite-like compound Bi7Fe3Ti3O21. Russian Journal of Inorganic Chemistry, 2010, 55, 1541-1545.	0.3	7
114	The synthesis and thermochemical study of (Mg,Fe)3Si2O5(OH)4 nanotubes. Russian Journal of Physical Chemistry A, 2010, 84, 44-47.	0.1	7
115	Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll. Russian Journal of General Chemistry, 2015, 85, 2238-2241.	0.3	7
116	The enthalpies of formation of natural and synthetic nanotubular chrysotile. Russian Journal of Physical Chemistry A, 2006, 80, 1021-1024.	0.1	6
117	Structural features and stability of the Aurivillius phases Bi n + 1Fe n â^ 3Ti3O3n + 3. Doklady Chemistry, 2012, 447, 293-295.	0.2	6
118	Formation of variable-composition iron(III) hydrosilicates with the Ñhrysotile structure. Russian Journal of General Chemistry, 2016, 86, 2581-2588.	0.3	6
119	Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, , 568-572.	0.2	6
120	Distribution of components between immiscible melts of a system under nonisothermal conditions. Glass Physics and Chemistry, 2006, 32, 638-642.	0.2	5
121	Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2-Al2O3-H2O system. Russian Journal of Inorganic Chemistry, 2007, 52, 1194-1200.	0.3	5
122	Calorimetric investigation of nanotubular hydrosilicates in the Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 system. Glass Physics and Chemistry, 2007, 33, 303-305.	0.2	5
123	Phase equilibria in the Ho2O3-SrAl2O4 system. Glass Physics and Chemistry, 2007, 33, 498-501.	0.2	5
124	Interaction of potassium chloride aqueous solution Mg3Si2O5(OH)4 with the nanotubes based on magnesium hydrosilicate. Russian Journal of Applied Chemistry, 2009, 82, 352-355.	0.1	5
125	Soliton in a nanotube wall and stokes flow in the nanotube. Technical Physics Letters, 2010, 36, 852-855.	0.2	5
126	Analysis of physicochemical properties of nanoparticles obtained by pulsed electric discharges in water. Technical Physics, 2012, 57, 1641-1645.	0.2	5

#	Article	IF	CITATIONS
127	Core-shell nanoparticles forming in the ZrO2-Gd2O3-H2O system under hydrothermal conditions. Doklady Physical Chemistry, 2014, 456, 71-73.	0.2	5
128	Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 70-75.	0.2	5
129	Heat-stimulated crystallization and phase transformation of titania nanoparticles. Journal of Crystal Growth, 2021, 576, 126371.	0.7	5
130	Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Technical Physics Letters, 1998, 24, 1-3.	0.2	4
131	Model of spinodal decomposition of phases under hyperbolic diffusion. Physics of the Solid State, 1999, 41, 824-826.	0.2	4
132	Title is missing!. Glass Physics and Chemistry, 2003, 29, 188-193.	0.2	4
133	Subsolidus phase relations in the Gd2O3-Rh2O3 system. Russian Journal of Inorganic Chemistry, 2006, 51, 1116-1121.	0.3	4
134	Nanocomposites based on polyimide thermoplastics and magnesium silicate nanoparticles with montmorillonite structure. Russian Journal of Applied Chemistry, 2007, 80, 106-109.	0.1	4
135	Physicochemical simulation of the combustion of materials with the total endothermal effect. Glass Physics and Chemistry, 2007, 33, 492-497.	0.2	4
136	Effect of the thermal prehistory of components on the hydration and crystallization of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Physics and Chemistry, 2007, 33, 515-520.	0.2	4
137	Interaction of Mg3Si2O5(OH)4 nanotubes with potassium hydroxide. Russian Journal of Applied Chemistry, 2008, 81, 375-379.	0.1	4
138	Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry, 2008, 81, 609-613.	0.1	4
139	Synthesis of solid solutions of double-layered Ruddlesden-Popper phases in the Gd2O3-SrO-Fe2O3-Al2O3 system. Russian Journal of Inorganic Chemistry, 2013, 58, 848-854.	0.3	4
140	Processing stages of Gd2Sr(Al1â^'x Fe x)2O7 series. Rare Metals, 2014, 33, 47-53.	3.6	4
141	Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders. Journal of Applied Crystallography, 2022, 55, 484-502.	1.9	4
142	The Future of Information Technologies in Materials Science. Glass Physics and Chemistry, 2002, 28, 50-58.	0.2	3
143	Title is missing!. Glass Physics and Chemistry, 2003, 29, 316-321.	0.2	3
144	Subsolidus Phase Relations in the System Dy2O3-Rh2O3. Inorganic Materials, 2005, 41, 840-844.	0.2	3

#	Article	IF	CITATIONS
145	Hybrid nanostructures based on layered silicates and nitrogen-containing organic compounds. Russian Journal of General Chemistry, 2007, 77, 221-225.	0.3	3
146	Electrooptic properties of aqueous suspensions of nanotubes based on magnesium hydrosilicate. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 50-55.	0.2	3
147	Structural features of carbon nanoparticles produced by chlorination of β-SiC nanopowder. Doklady Physical Chemistry, 2014, 458, 153-157.	0.2	3
148	Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O System. Russian Journal of Applied Chemistry, 2016, 89, 1932-1938.	0.1	3
149	Charge pumping in nanotube filled with electrolyte. Chinese Journal of Physics, 2018, 56, 2531-2537.	2.0	3
150	Experimental study of oxidic-metallic melt oxidation. Nuclear Engineering and Design, 2020, 363, 110618.	0.8	3
151	Effects of silica and titania modification additions on the microstructure of sintered alumina. Inorganic Materials, 2000, 36, 1127-1132.	0.2	2
152	Interaction of a material based on aluminum and iron oxides with a metal melt. Russian Journal of Applied Chemistry, 2007, 80, 528-535.	0.1	2
153	Kinetics and mechanism of the formation of hollandites in the BaO(Cs2O)-Al2O3-TiO2 system from initial mixtures prepared by different methods. Glass Physics and Chemistry, 2007, 33, 613-619.	0.2	2
154	Structure of aqueous dispersions of Mg3Si2O5(OH)4 nanotubes. Russian Journal of Applied Chemistry, 2008, 81, 207-211.	0.1	2
155	Physicochemical prerequisites of the synthesis of new ionic conductors based on complex oxides with a ramsdellite-type structure. Glass Physics and Chemistry, 2008, 34, 449-460.	0.2	2
156	Soliton-induced flow in carbon nanotubes. Europhysics Letters, 2013, 101, 66001.	0.7	2
157	Formation of nanocrystals in the ZrO2–H2O system. Russian Journal of General Chemistry, 2015, 85, 2673-2676.	0.3	2
158	Effect of temperature gradient on chemical element partitioning in corium pool during in-vessel retention. Nuclear Engineering and Design, 2018, 327, 82-91.	0.8	2
159	Experimental studies of impact on a critical heat flux the parameters of nanoparticle layer formed at nanofluid boiling. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, 279-289.	0.2	2
160	Design of New Functional Materials Based on Complex Oxides with a Tunnel Structure of the Ramsdellite, Hollandite, and Ba2Ti9O20Types. Glass Physics and Chemistry, 2004, 30, 257-269.	0.2	1
161	Kinetics of the nanocrystal formation in the ZrO2-In2O3-H2O system under hydrothermal conditions. Glass Physics and Chemistry, 2005, 31, 236-239.	0.2	1
162	Possible Symmetry Species of Fullerenes. Glass Physics and Chemistry, 2005, 31, 275-279.	0.2	1

#	Article	IF	CITATIONS
163	Subsolidus phase relations in the system Tm2O3-Rh2O3. Inorganic Materials, 2007, 43, 1326-1329.	0.2	1
164	Investigation into the formation of phases with a Ba2Ti9O20-type structure in the BaO-TiO2 and BaO-SrO-TiO2 systems. Glass Physics and Chemistry, 2007, 33, 72-79.	0.2	1
165	Nanocrystals of ZrO2 as sorption heat accumulators. Glass Physics and Chemistry, 2007, 33, 587-589.	0.2	1
166	"Almost quasistationary―approximation for the problem of solidification front stability. Zeitschrift Fur Angewandte Mathematik Und Physik, 2009, 60, 178-188.	0.7	1
167	Investigation of the mechanism of formation of BaTi4O9 from initial mixtures of different dispersion. Glass Physics and Chemistry, 2009, 35, 327-331.	0.2	1
168	Waveguide modes and adhesion conditions for flow in a nanochannel. Doklady Physics, 2010, 55, 271-273.	0.2	1
169	Symmetrical features of the structure of C24 and C48 fullerenes. Glass Physics and Chemistry, 2010, 36, 358-368.	0.2	1
170	A Model of Irregular Impurity at the Surface of Nanoparticle and Catalytic Activity. Communications in Theoretical Physics, 2012, 58, 55-58.	1.1	1
171	Influence of the Synthesis Method on the Mechanism of Formation and Dielectric Properties of Ba2Ti9O20. Class Physics and Chemistry, 2004, 30, 270-273.	0.2	0
172	Synthesis of Titanates with a Ramsdellite-Type Tunnel Structure Crystallizing in the Li2O-Fe2O3-TiO2 System in Different Gaseous Media. Glass Physics and Chemistry, 2005, 31, 803-807.	0.2	0
173	Symmetrical features of the structure of fullerene C20. Russian Journal of General Chemistry, 2009, 79, 274-277.	0.3	0
174	Effect of laser processing on catalytic properties of shungite. Russian Journal of Applied Chemistry, 2011, 84, 190-195.	0.1	0
175	Two-scale model of hydrothermal synthesis of nanotubes. Journal of Physics: Conference Series, 2014, 541, 012013.	0.3	0