Weiren Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/927631/publications.pdf Version: 2024-02-01

WEIDEN CHENC

#	Article	IF	CITATIONS
1	Loading Singleâ€Ni Atoms on Assembled Hollow Nâ€Rich Carbon Plates for Efficient CO ₂ Electroreduction. Advanced Materials, 2022, 34, e2105204.	11.1	100
2	Recent Advances in Dualâ€Atom Site Catalysts for Efficient Oxygen and Carbon Dioxide Electrocatalysis. Small Methods, 2022, 6, .	4.6	36
3	Synergetic Dualâ€lon Centers Boosting Metal Organic Framework Alloy Catalysts toward Efficient Two Electron Oxygen Reduction. Small, 2022, 18, .	5.2	17
4	Tracking the Oxygen Dynamics of Solid–Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies. Accounts of Chemical Research, 2022, 55, 1949-1959.	7.6	29
5	Dissecting π-conjugated covalent-coupling over conductive MOFs toward efficient two-electron oxygen reduction. Applied Catalysis B: Environmental, 2022, 317, 121706.	10.8	15
6	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
7	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
8	High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Science China Materials, 2021, 64, 2467-2476.	3.5	16
9	Exposing unsaturated Cu ₁ -O ₂ sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. Science Advances, 2021, 7, .	4.7	183
10	Self-Nanocavity-Confined Halogen Anions Boosting the High Selectivity of the Two-Electron Oxygen Reduction Pathway over Ni-Based MOFs. Journal of Physical Chemistry Letters, 2021, 12, 8706-8712.	2.1	19
11	In Situ Construction of Flexible VNi Redox Centers over Niâ€Based MOF Nanosheet Arrays for Electrochemical Water Oxidation. Small Methods, 2021, 5, e2100573.	4.6	28
12	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie, 2021, 133, 26601-26606.	1.6	14
13	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 26397-26402.	7.2	105
14	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Science Advances, 2021, 7, eabk0919.	4.7	87
15	Phase-mediated robust interfacial electron-coupling over core-shell Co@carbon towards superior overall water splitting. Applied Catalysis B: Environmental, 2020, 266, 118621.	10.8	39
16	Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy, 2020, 77, 105121.	8.2	45
17	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	6.6	485
18	Dynamic Evolution of Solid–Liquid Electrochemical Interfaces over Single-Atom Active Sites. Journal of the American Chemical Society, 2020, 142, 12306-12313.	6.6	124

WEIREN CHENG

#	Article	IF	CITATIONS
19	NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angewandte Chemie, 2020, 132, 18391-18396.	1.6	24
20	NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 18234-18239.	7.2	232
21	Co–Ni Nanoalloy–Organic Framework Electrocatalysts with Ultrahigh Electron Transfer Kinetics for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 6898-6904.	3.2	16
22	Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide. Chemical Communications, 2020, 56, 5299-5302.	2.2	10
23	Hetero-N-Coordinated Co Single Sites with High Turnover Frequency for Efficient Electrocatalytic Oxygen Evolution in an Acidic Medium. ACS Energy Letters, 2019, 4, 1816-1822.	8.8	92
24	Donutlike RuCu Nanoalloy with Ultrahigh Mass Activity for Efficient and Robust Oxygen Evolution in Acid Solution. ACS Applied Energy Materials, 2019, 2, 7483-7489.	2.5	23
25	Interlayer Photoelectron Transfer Boosted by Bridged Ru ^{IV} Atoms in GaS Nanosheets for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 45561-45567.	4.0	8
26	Operando Insight into the Oxygen Evolution Kinetics on the Metal-Free Carbon-Based Electrocatalyst in an Acidic Solution. ACS Applied Materials & Interfaces, 2019, 11, 34854-34861.	4.0	37
27	An on-demand solar hydrogen-evolution system for unassisted high-efficiency pure-water splitting. Journal of Materials Chemistry A, 2019, 7, 17315-17323.	5.2	17
28	Metallic Ni ₃ N Quantum Dots as a Synergistic Promoter for NiO Nanosheet toward Efficient Oxygen Reduction Electrocatalysis. Journal of Physical Chemistry C, 2019, 123, 8633-8639.	1.5	19
29	Potential-driven surface active structure rearrangement over FeP@NC towards efficient electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 7918-7923.	1.3	15
30	Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. Journal of Materials Chemistry A, 2019, 7, 11170-11176.	5.2	22
31	Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy, 2019, 4, 115-122.	19.8	680
32	Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 6228-6234.	4.0	87
33	Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2018, 6, 3202-3210.	5.2	63
34	A metal-vacancy-solid-solution NiAlP nanowall array bifunctional electrocatalyst for exceptional all-pH overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9420-9427.	5.2	74
35	Fast Photoelectron Transfer in (C _{ring})–C ₃ N ₄ Plane Heterostructural Nanosheets for Overall Water Splitting. Journal of the American Chemical Society, 2017, 139, 3021-3026.	6.6	640
36	Singleâ€Site Active Cobaltâ€Based Photocatalyst with a Long Carrier Lifetime for Spontaneous Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 9312-9317.	7.2	393

WEIREN CHENG

#	Article	IF	CITATIONS
37	Electron Delocalization Boosting Highly Efficient Electrocatalytic Water Oxidation in Layered Hydrotalcites. Journal of Physical Chemistry C, 2017, 121, 21962-21968.	1.5	25
38	Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 26867-26873.	4.0	57
39	CoOOH Nanosheets with High Mass Activity for Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 8722-8727.	7.2	547
40	Impurity Concentration Dependence of Optical Absorption for Phosphorus-Doped Anatase TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 8184-8188.	1.5	56