Guido Sebastiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9276219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Translational Research, 2022, 247, 137-157.	2.2	10
2	Serum Proteomic Profile of Asthmatic Patients after Six Months of Benralizumab and Mepolizumab Treatment. Biomedicines, 2022, 10, 761.	1.4	2
3	Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors. Frontiers in Immunology, 2022, 13, 833141.	2.2	9
4	Identification and Validation of miR-222-3p and miR-409-3p as Plasma Biomarkers in Gestational Diabetes Mellitus Sharing Validated Target Genes Involved in Metabolic Homeostasis. International Journal of Molecular Sciences, 2022, 23, 4276.	1.8	18
5	Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes, 2022, 10, 12.	1.7	8
6	NF-κB-inducing kinase (NIK) is activated in pancreatic β-cells but does not contribute to the development of diabetes. Cell Death and Disease, 2022, 13, 476.	2.7	4
7	The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. International Journal of Molecular Sciences, 2021, 22, 803.	1.8	11
8	Extracellular Vesicles in Immune System Regulation and Type 1 Diabetes: Cell-to-Cell Communication Mediators, Disease Biomarkers, and Promising Therapeutic Tools. Frontiers in Immunology, 2021, 12, 682948.	2.2	23
9	Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. International Journal of Molecular Sciences, 2021, 22, 7716.	1.8	15
10	Circulating microRNAs Signature for Predicting Response to GLP1-RA Therapy in Type 2 Diabetic Patients: A Pilot Study. International Journal of Molecular Sciences, 2021, 22, 9454.	1.8	12
11	Immunoregulated insulitis and slow-progressing type 1 diabetes after duodenopancreatectomy. Diabetologia, 2021, 64, 2731-2740.	2.9	4
12	Protocol to analyze circulating small non-coding RNAs by high-throughput RNA sequencing from human plasma samples. STAR Protocols, 2021, 2, 100606.	0.5	7
13	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.3	11
14	miR-409-3p is reduced in plasma and islet immune infiltrates of NOD diabetic mice and is differentially expressed in people with type 1 diabetes. Diabetologia, 2020, 63, 124-136.	2.9	23
15	From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: New concepts on the stage. Diabetes/Metabolism Research and Reviews, 2020, 36, e3264.	1.7	20
16	MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema. International Journal of Molecular Sciences, 2020, 21, 7328.	1.8	14
17	Pancreatic Alpha-Cells Contribute Together With Beta-Cells to CXCL10 Expression in Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 630.	1.5	17
18	SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Frontiers in Endocrinology, 2020, 11, 596898.	1.5	144

GUIDO SEBASTIANI

#	Article	IF	CITATIONS
19	Prevention and treatment of autoimmune diseases with plant virus nanoparticles. Science Advances, 2020, 6, eaaz0295.	4.7	22
20	Intestinal Delivery of Proinsulin and IL-10 via Lactococcus lactis Combined With Low-Dose Anti-CD3 Restores Tolerance Outside the Window of Acute Type 1 Diabetes Diagnosis. Frontiers in Immunology, 2020, 11, 1103.	2.2	19
21	Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes. International Journal of Molecular Sciences, 2019, 20, 6358.	1.8	29
22	Lymphocyte-Derived Exosomal MicroRNAs Promote Pancreatic β Cell Death and May Contribute to Type 1 Diabetes Development. Cell Metabolism, 2019, 29, 348-361.e6.	7.2	200
23	Islet-reactive CD8 ⁺ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Science Immunology, 2018, 3, .	5.6	171
24	G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 201-213.	2.2	12
25	Circulating Noncoding RNAs as Candidate Biomarkers of Endocrine and Metabolic Diseases. International Journal of Endocrinology, 2018, 2018, 1-2.	0.6	6
26	MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. International Journal of Molecular Sciences, 2018, 19, 3705.	1.8	77
27	Serum Levels of miR-148a and miR-21-5p Are Increased in Type 1 Diabetic Patients and Correlated with Markers of Bone Strength and Metabolism. Non-coding RNA, 2018, 4, 37.	1.3	39
28	Circulating MicroRNAs as Biomarkers of Gestational Diabetes Mellitus: Updates and Perspectives. International Journal of Endocrinology, 2018, 2018, 1-11.	0.6	49
29	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	7.2	177
30	Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells. Diabetologia, 2018, 61, 2344-2355.	2.9	60
31	MicroRNA Expression Analysis of In Vitro Dedifferentiated Human Pancreatic Islet Cells Reveals the Activation of the Pluripotency-Related MicroRNA Cluster miR-302s. International Journal of Molecular Sciences, 2018, 19, 1170.	1.8	14
32	Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight, 2018, 3, .	2.3	85
33	MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetologica, 2017, 54, 265-281.	1.2	36
34	Regulatory T-cells from pancreatic lymphnodes of patients with type-1 diabetes express increased levels of microRNA miR-125a-5p that limits CCR2 expression. Scientific Reports, 2017, 7, 6897.	1.6	53
35	Reversal of Diabetes in NOD Mice by Clinical-Grade Proinsulin and IL-10–Secreting Lactococcus lactis in Combination With Low-Dose Anti-CD3 Depends on the Induction of Foxp3-Positive T Cells. Diabetes, 2017, 66, 448-459.	0.3	57
36	MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. Diabetes, 2017, 66, 100-112.	0.3	87

GUIDO SEBASTIANI

#	Article	IF	CITATIONS
37	Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Frontiers in Endocrinology, 2017, 8, 345.	1.5	65
38	MicroRNAs: Novel Players in the Dialogue between Pancreatic Islets and Immune System in Autoimmune Diabetes. BioMed Research International, 2015, 2015, 1-11.	0.9	50
39	Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetologica, 2015, 52, 1025-1035.	1.2	33
40	MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetologica, 2015, 52, 523-530.	1.2	127
41	Enteroviral Infections and Development of Type 1 Diabetes: The Brothers Karamazov Within the CVBs. Diabetes, 2014, 63, 384-386.	0.3	13
42	Dietary Supplementation With High Doses of Regular Vitamin D3 Safely Reduces Diabetes Incidence in NOD Mice When Given Early and Long Term. Diabetes, 2014, 63, 2026-2036.	0.3	66
43	Circulating miRNA95 and miRNA190 Are Sensitive Markers for the Differential Diagnosis of Thyroid Nodules in a Caucasian Population. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4190-4198.	1.8	53
44	Plateletâ€Derived Growth Factor Regulation of Typeâ€5 Phosphodiesterase in Human and Rat Penile Smooth Muscle Cells. Journal of Sexual Medicine, 2014, 11, 1675-1684.	0.3	6
45	Oral Delivery of Glutamic Acid Decarboxylase (GAD)-65 and IL10 by <i>Lactococcus lactis</i> Reverses Diabetes in Recent-Onset NOD Mice. Diabetes, 2014, 63, 2876-2887.	0.3	129
46	Coxsackieviruses and Insulitis. , 2013, , 157-166.		0
47	Reduction of Circulating Neutrophils Precedes and Accompanies Type 1 Diabetes. Diabetes, 2013, 62, 2072-2077.	0.3	177
48	The case for virus-induced type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 292-298.	1.2	25
49	Viral Infections and Diabetes. Advances in Experimental Medicine and Biology, 2013, 771, 252-271.	0.8	27
50	A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia, 2012, 55, 3262-3272.	2.9	208
51	Immunology in the clinic review series; focus on type 1 diabetes and viruses: how viral infections modulate beta cell function. Clinical and Experimental Immunology, 2012, 168, 24-29.	1.1	31
52	MicroRNAs as New Tools for Exploring Type 1 Diabetes: Relevance for Immunomodulation and Transplantation Therapy. Transplantation Proceedings, 2011, 43, 330-332.	0.3	12
53	Increased expression of microRNA miRâ€326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes/Metabolism Research and Reviews, 2011, 27, 862-866.	1.7	116
54	Virus Infections: Lessons from Pancreas Histology. Current Diabetes Reports, 2010, 10, 357-361.	1.7	13

#	Article	IF	CITATIONS
55	Outer Membrane Vesicles From The Gut Microbiome Contribute to Tumor Immunity by Eliciting Cross-Reactive T Cells. Frontiers in Oncology, 0, 12, .	1.3	8