Tanyuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9276064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomically dispersed Zn-Co-N-C catalyst boosting efficient and robust oxygen reduction catalysis in acid via stabilizing Co-N bonds. Fundamental Research, 2023, 3, 909-917.	1.6	4
2	Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Applied Catalysis B: Environmental, 2022, 302, 120862.	10.8	97
3	Effective Approaches for Designing Stable M–N <i>_x</i> /C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
4	Molybdenumâ€doped ordered L1 ₀ â€PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat, 2022, 2, 347-356.	7.8	13
5	Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chinese Journal of Catalysis, 2022, 43, 1680-1686.	6.9	20
6	Protrusionâ€Rich Cu@NiRu Core@shell Nanotubes for Efficient Alkaline Hydrogen Evolution Electrocatalysis. Small, 2022, 18, .	5.2	10
7	Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Applied Catalysis B: Environmental, 2021, 289, 119783.	10.8	80
8	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2021, 57, 1839-1854.	2.2	23
9	An effective dual-modification strategy to enhance the performance of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode for Li-ion batteries. Nanoscale, 2021, 13, 4670-4677.	2.8	17
10	Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3487-3494.	2.5	16
11	Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Ptâ€Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2100883.	7.8	68
12	Accelerated polysulfide conversion on hierarchical porous vanadium–nitrogen–carbon for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 584-590.	2.8	26
13	Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochimica Acta, 2020, 330, 135310.	2.6	44
14	Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12, 21743-21749.	2.8	43
15	Core@shell Sb@Sb ₂ O ₃ nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.	2.2	9
16	Bifunctional Atomically Dispersed Mo–N ₂ /C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.	7.3	106
17	Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). Advanced Energy Materials, 2020, 10, 2070124.	10.2	5
18	Promoting C ₂₊ Production from Electrochemical CO ₂ Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15223-15229.	3.2	51

TANYUAN WANG

#	Article	IF	CITATIONS
19	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
20	Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020, 41, 847-852.	6.9	53
21	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
22	Ultrathin and defect-rich intermetallic Pd ₂ Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.	5.2	54
23	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30
24	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
25	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale, 2019, 11, 17376-17383.	2.8	46
26	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	10.2	127
27	A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 5862-5869.	5.2	68
28	Enhancing oxygen reduction electrocatalysis through tuning crystal structure: Influence of intermetallic MPt nanocrystals. Chinese Journal of Catalysis, 2018, 39, 583-589.	6.9	12
29	Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium–sulfur battery cathodes. Nanoscale, 2018, 10, 5634-5641.	2.8	74
30	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
31	Boosting Tunable Syngas Formation via Electrochemical CO ₂ Reduction on Cu/In ₂ O ₃ Core/Shell Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 36996-37004.	4.0	106
32	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
33	Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21, 41-54.	6.2	374
34	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
35	Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochimica Acta, 2018, 282, 973-980.	2.6	50
36	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	15.6	91

TANYUAN WANG

#	Article	IF	CITATIONS
37	Molybdenum disulfide and Au ultrasmall nanohybrids as highly active electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4122-4128.	5.2	41
38	Energy storage materials derived from Prussian blue analogues. Science Bulletin, 2017, 62, 358-368.	4.3	136
39	Electrodeposited Mo ₃ S ₁₃ Films from (NH ₄) ₂ Mo ₃ S ₁₃ ·2H ₂ O for Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 18675-18681.	4.0	52
40	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	6.6	553
41	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
42	Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 25378-25384.	5.2	100
43	Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.	5.6	105
44	Electrochemical Sensors Based on Molybdenum Disulfide Nanomaterials. Electroanalysis, 2015, 27, 2091-2097.	1.5	38
45	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	5.2	100
46	Direct Detection of DNA below ppb Level Based on Thionin-Functionalized Layered MoS ₂ Electrochemical Sensors. Analytical Chemistry, 2014, 86, 12064-12069.	3.2	170
47	Synergistic Catalytic Effect of MoS ₂ Nanoparticles Supported on Gold Nanoparticle Films for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881.	1.8	46
48	Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size and Thickness Reduction. ACS Applied Materials & amp; Interfaces, 2014, 6, 19726-19736.	4.0	83
49	Electrochemically Fabricated Polypyrrole and MoS _{<i>x</i>} Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst. Advanced Materials, 2014, 26, 3761-3766.	11.1	186
50	Salts of C ₆₀ (OH) ₈ Electrodeposited onto a Glassy Carbon Electrode: Surprising Catalytic Performance in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2013, 52, 10867-10870.	7.2	98
51	Sizeâ€Dependent Enhancement of Electrocatalytic Oxygenâ€Reduction and Hydrogenâ€Evolution Performance of MoS ₂ Particles. Chemistry - A European Journal, 2013, 19, 11939-11948.	1.7	226
52	Biosensor Based on Ultrasmall MoS ₂ Nanoparticles for Electrochemical Detection of H ₂ O ₂ Released by Cells at the Nanomolar Level. Analytical Chemistry, 2013, 85, 10289-10295.	3.2	438
53	A simple method for amino-functionalization of carbon nanotubes and electrodeposition to modify neural microelectrodes. Journal of Electroanalytical Chemistry, 2013, 688, 69-75.	1.9	15
54	Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode. Energy and Environmental Science, 2013, 6, 625-633.	15.6	364

#	Article	IF	CITATIONS
55	Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording. Sensors and Actuators B: Chemical, 2009, 137, 334-339.	4.0	83